Соч.: CEuvres..., publiées par les soins de m. G. Darboux, t. 1—2, P., 1888—90; Analyse des équations déterminées, pt 1, P., 1831.
Ж. Б. Ж. Фурье.
Фурье' интегра'л, формула для разложения непериодической функции на гармонические компоненты, частоты которых пробегают непрерывную совокупность значений. Если функция f (x ) удовлетворяет на каждом конечном отрезке условию Дирихле (см. Фурье ряд ) и если сходится
,
то
. (1)
Эта формула впервые встречается при решении некоторых задач теплопроводности у Ж. Фурье (1811), но её доказательство было дано позже другими математиками. Формулу (1) можно представить также в виде
, (2)
где
;
.
В частности для чётных функций
,
где
.
Формулу (2) можно рассматривать как предельную форму ряда Фурье для функций, имеющих период 2T , когда Т ® ¥. При этом а (u ) и b (u ) аналогичны коэффициентам Фурье функции f (x ). Употребляя комплексные числа, можно заменить формулу (1) формулой
.
Формулу (1) можно преобразовать также к виду
(3)
(простой интеграл Фурье).
Если интегралы в формулах (2), (3) расходятся (см. Несобственные интегралы ), то во многих случаях их можно просуммировать к f (x ) при помощи того или иного метода суммирования . При решении многих задач используются формулы Ф. и. для функций двух и большего числа переменных.
Лит.: Титчмарш Е., Введение в теорию интегралов Фурье, пер. с англ., М. — Л., 1948.
Фурье' коэффицие'нты, коэффициенты
(*)
разложения функции f (x) , имеющей период 2T , в ряд Фурье (см. Фурье ряд ). Формулы (*) называют формулами Эйлера — Фурье. Непрерывная функция f (x ) однозначно определяется своими коэффициентами Фурье. Ф. к. интегрируемой функции f (x ) стремятся к нулю при n ® ¥, причём скорость их убывания зависит от дифференциальных свойств функции f (x ). Например, если f (x ) имеет k непрерывных производных, то существует такое число с , что |an | £ c/nk , |bn | £ c/nk . Ф. к. связаны с f (x ) также следующим неравенством:
(см. Парсеваля равенство ). Ф. к. функции f (x ) по любой нормированной ортогональной на отрезке [а , b ] системе функций j1 (x ), j2 (x ),..., jn (x ),... (см. Ортогональная система функций ) равны
.
Фурье' ме'тод, метод решения задач математической физики, основанный на разделении переменных. Предложен для решения задач теории теплопроводности Ж. Фурье и в полной общности сформулирован М. В. Остроградским в 1828. Решение уравнения, удовлетворяющее заданным начальным однородным и краевым условиям, ищется по Ф. м. как суперпозиция решений, удовлетворяющих краевым условиям и представимых в виде произведения функции от пространственных переменных на функцию от времени. Нахождение таких решений связано с разысканием собственных функций и собственных значений некоторых дифференциальных операторов и последующим разложением функций начальных условий по найденным собственным функциям. В частности, разложение функций в ряды и интегралы Фурье (см. Фурье ряд , Фурье интеграл ) связано с применением Ф. м. для изучения задач о колебании струны и о теплопроводности стержня. Например, изучение малых колебаний струны длины l , имеющей закрепленные концы, сводиться к решению уравнения при краевых условиях u (0, t ) = u (l , t ) = 0 и начальных условиях u (x ,0) = f (x ); u't (x , 0) = F (x ); 0 £ x £ l . Решения этого уравнения, имеющие вид X (x ) T (t ) и удовлетворяющие краевым условиям, выражаются формулой:
.
Выбирая соответствующим образом коэффициенты An и Bn , можно добиться того, что функция
будет решением поставленной задачи.
Ряд важных проблем, связанных с применением Ф. м., был решен В. А. Стекловым .
Фурье' преобразова'ние (данной функции), функция, выражающаяся через данную функцию f (x ) формулой:
, (1)
Если функция f (x ) чётная, то её ф. п. равно
(2)
(косинус-преобразование), а если f (x ) — нечётная функция, то
(3)
(синус-преобразование). Формулы (1), (2) и (3) обратимы, т. е. для чётных функций
, (4)
а для нечётных функций
. (5)
В общем случае имеет место формула
. (6)
Каждой операции над функциями соответствует операция над их Ф. п., которая во многих случаях проще соответствующей операции над f (x ). Например, Ф. п. f '(x ) является iug (u ). Если
, (7)
то g (u ) = g1 (u ) g2 (u ). Для f (x + а ) Ф. п. является eiua g (u ), а для c1 f1 (x ) + c2 f2 (x ) — функция c1 g1 (u ) + c2 g2 (u ).
Если существует , то интегралы в формулах (1) и (6) сходятся в среднем (см. Сходимость ), причём
(8)
(теорема Планшереля). Формула (8) является обобщением на Ф. п. формулы Парсеваля (см. Парсеваля равенство ) для рядов Фурье (см. Фурье ряд ). Физический смысл формулы (8) заключается в равенстве энергии некоторого колебания сумме энергий его гармонических компонент. Отображение F : f (x ) ® g (u ) является унитарным оператором в гильбертовом пространстве функций f (x ), — ¥ < x < ¥, с интегрируемым квадратом. Этот оператор может быть представлен также в виде
. (9)
При некоторых условиях на f (x ) справедлива формула Пуассона
,
находящая применение в теории тэта-функций .
Если функция f (x ) достаточно быстро убывает, то её Ф. п. можно определить и при некоторых комплексных значениях u = v + iw . Например, если существует , а > 0, то Ф. п. определено при |w | < а. Ф. п. при комплексных значениях тесно связано с двусторонним преобразованием Лапласа (см. Лапласа преобразование )
.
Оператор Ф. п. может быть расширен на более обширные классы функций, нежели совокупность суммируемых функций [например, для функций f (x ) таких, что (1 + |x |)–1 f (x ) суммируема, Ф. п. определяется формулой (9)], и даже на некоторые классы обобщённых функций (т. н. медленного роста).
Имеются обобщения Ф. п. Одно из них использует различного рода специальные функции, например Бесселя функции , это направление получает завершение в теории представлений непрерывных групп . Другим является т. н. преобразование Фурье — Стилтьеса, широко применяемое, например, в теории вероятностей; оно определяется для произвольной ограниченной неубывающей функции j(x ) Стилтьеса интегралом