У верхней границы тропосферы и в стратосфере наблюдается повышенное содержание озона. Слой максимальной концентрации озона расположен на высотах ~21—25 км. Начиная с высоты ~ 40 км увеличивается содержание атомарного кислорода. Диссоциация молекулярного азота начинается на высоте около 200 км. Наряду с диссоциацией молекул под действием коротковолнового и корпускулярного излучений Солнца на высотах от 50 до 400 км происходит ионизация атмосферных газов. От степени ионизации зависит электропроводность атмосферы. На высоте 250—300 км, где расположен максимум ионизации, электропроводность атмосферы в 1012 раз больше, чем у земной поверхности. Для верхних слоев атмосферы характерен также процесс диффузионного разделения газов под действием силы тяжести (гравитационное разделение): газы распределяются с высотой в соответствии с их молекулярной массой. Верхние слои атмосферы в результате оказываются обогащенными более лёгкими газами. Совокупность процессов диссоциации, ионизации и гравитационного разделения определяет химическую неоднородность верхних слоев атмосферы. Примерно до 200 км основным компонентом воздуха является азот N2. Выше начинает превалировать атомарный кислород. На высоте более 600 км преобладающим компонентом становится гелий, а в слое от 2 тыс. км и выше — водород, который образует вокруг З. т. н. водородную корону.
Через атмосферу к поверхности З. поступает электромагнитное излучение Солнца — главный источник энергии физических, химических и биологических процессов в географической оболочке З. Атмосфера прозрачна для электромагнитного излучения в диапазоне длин волн l от 0,3 мкм (3000 Å) до 5,2 мкм (в котором заключено около 88% всей энергии солнечного излучения) и радиодиапазоне — от 1 мм до 30 м. Излучение инфракрасного диапазона (l>5,2мкм) поглощается в основном парами воды и углекислым газом тропосферы и стратосферы. Непрозрачность атмосферы в радиодиапазоне обусловлена отражением радиоволн от её ионизованных слоев (ионосферы). Излучение ультрафиолетового диапазона (l от 3000 до 1800 Å) поглощается озоном на высотах 15—60 км, а волны длиной 1800—1000 Å и короче — азотом, молекулярным и атомарным кислородом (на высоте от нескольких десятков до нескольких сот км над поверхностью З.). Жёсткое коротковолновое излучение (рентгеновское и гамма-излучение) поглощается всей толщей атмосферы, до поверхности З. оно не доходит. Т. о., биосфера оказывается защищенной от губительного воздействия коротковолнового излучения Солнца. В виде прямой и рассеянной радиации поверхности З. достигает лишь 48% энергии солнечного излучения, падающего на внешнюю границу атмосферы. В то же время атмосфера почти непрозрачна для теплового излучения З. (за счёт присутствия в атмосфере углекислого газа и паров воды, см. Парниковый эффект). Если бы З. Была лишена атмосферы, то средняя температура её поверхности была бы —23°С, в действительности средняя годовая температура поверхности З. составляет 14,8°С. Атмосфера задерживает также часть космических лучей и служит бронёй против разрушительного действия метеоритов. Насколько велико защитное значение земной атмосферы, показывает испещрённая метеоритными кратерами поверхность Луны, лишённая атмосферной защиты.
Между атмосферой и подстилающей поверхностью происходит непрерывный обмен энергией (теплооборот) и веществом (влагооборот, обмен кислородом и др. газами). Теплооборот включает перенос теплоты излучением (лучистый теплообмен), передачу теплоты за счёт теплопроводности, конвекции и фазовых переходов воды (испарения, конденсации, кристаллизации).
Неравномерный нагрев атмосферы над сушей, морем на разных высотах и в разных широтах приводит к неравномерному распределению атмосферного давления. Возникающие в атмосфере устойчивые перепады давления вызывают общую циркуляцию атмосферы, с которой связан влагооборот, включающий процессы испарения воды с поверхности гидросферы, переноса водяного пара воздушными потоками, выпадение осадков и их сток. Теплооборот, влагооборот и циркуляция атмосферы являются основными климато-образующими процессами. Атмосфера является активным агентом в различных процессах, происходящих на поверхности суши и в верхних слоях водоёмов. Важнейшую роль играет атмосфера в развитии жизни на З.
Гидросфера
Вода образует прерывистую оболочку З. Около 94% общего объёма гидросферы сосредоточено в океанах и морях; 4% заключено в подземных водах; около 2% — в льдах и снегах (главным образом Арктики, Антарктики и Гренландии); 0,4% — в поверхностных водах суши (реки, озёра, болота). Незначительное количество воды содержится в атмосфере и организмах. Все формы водных масс переходят одна в другую в процессе обращения (см. Влагооборот, Водный баланс). Ежегодное количество осадков, выпадающих на земную поверхность, равно количеству воды, испарившейся в сумме с поверхности суши и океанов. В общем круговороте влаги наиболее подвижны воды атмосферы.
Вода гидросферы содержит почти все химические элементы. Средний химический состав её близок к составу океанической воды, в которой преобладают кислород, водород, хлор и натрий. В водах суши преобладающими являются карбонаты. Содержание минеральных веществ в водах суши (солёность) подвержено большим колебаниям в зависимости от местных условий и прежде всего от климата. Обычно воды суши слабо минерализованы — пресные (солёность рек и пресных озёр от 50 до 1000 мг/кг). Средняя солёность океанической воды около 35 г/кг (35о/оо), солёность морской воды колеблется от 1—2°/оо (Финский залив Балтийского моря) до 41,5°/оо (Красное море). Наибольшая концентрация солей — в солёных озёрах (Мёртвое море до 260°/оо) и подземных водах (до 600°/оо).
Современный солевой состав вод гидросферы сформировался за счёт продуктов химического выветривания изверженных пород и привноса на поверхность З. продуктов дегазации мантии: в океанической воде катионы натрия, магния, кальция, калия, стронция присутствуют главным образом за счёт речного стока. Хлор, сера, фтор, бром, йод, бор и др. элементы, играющие в океанической воде роль анионов, являются преимущественно продуктами подводных вулканических извержений. Содержащиеся в гидросфере углерод, азот, свободный кислород и др. элементы поступают из атмосферы и из живого вещества суши и океана. Благодаря большому содержанию в океане биогенных химических элементов океаническая вода служит весьма благоприятной средой для развития растительных и животных организмов.
Мировой океан образует самое большое скопление вод на земной поверхности.
Морские течения связывают отдельные его части в единое целое, вследствие чего воды океанов и морей обладают общими физико-химическими свойствами.
Поверхностный слой воды в океанах (до глубины 200—300 м) имеет непостоянную температуру, меняющуюся по сезонам года и в зависимости от температурного режима соответствующего климатического пояса. Средняя годовая температура этого слоя постепенно убывает от 25 °С у экватора до 0 °С и ниже в полярных областях. Характер вертикального изменения температур океанических вод сильно варьирует в зависимости от географической широты, что объясняется главным образом неодинаковым нагреванием и охлаждением поверхностных вод. С др. стороны, имеются существенные различия в изменении температуры воды по глубине на одних и тех же широтах в связи с течениями. Однако для огромных экваториальных и тропических пространств океана в изменении температур по вертикали имеется много общего. До глубины 300—500 м температура воды здесь быстро понижается, затем до 1200— 1500 м понижение температуры происходит медленнее, глубже 1500 м она почти не изменяется. В придонных слоях температура держится обычно между 2°С и 0 °С. В умеренных областях изменение температуры с глубиной менее значительно, что связано с меньшим прогревом поверхностных вод. В приполярных областях температура сначала понижается до глубин около 50—100 м, затем до глубин около 500 м несколько повышается (за счёт приноса более тёплых и солёных вод из умеренных широт), после чего медленно понижается до 0 °С и ниже в придонных слоях.
С изменением температуры и солёности меняется и плотность воды. Наибольшая плотность характерна для высоких широт, где она достигает у поверхности 1,0275 г/см3. В приэкваториальной области плотность воды у поверхности — 1,02204 г/см3.