Телескопические наблюдения. Усовершенствование телескопа шло сначала довольно медленно. По сравнению с трубой Галилея некоторым улучшением было предложение Кеплера заменить рассеивающую окулярную линзу собирающей, что расширило поле зрения и позволило применять более сильные увеличения. Этот простой окуляр был затем усовершенствован Х. Гюйгенсом и применяется поныне. Однако вследствие хроматической и отчасти сферической аберрации изображения продолжали оставаться расплывчатыми, с радужными каёмками, что заставляло для уменьшения их влияния увеличивать фокусные расстояния объективов (до 45 м), сохраняя сравнительно малые их диаметры, т. к. в то время не умели выплавлять большие блоки оптического стекла. Но и с такими несовершенными инструментами был сделан ряд важных открытий. Так, Гюйгенс в 1655 разглядел кольца Сатурна (Галилею диск Сатурна казался удлинённым или «тройным»). Гюйгенс открыл наиболее яркий спутник Сатурна, Дж. Кассини обнаружил ещё 4 других, более слабых спутника. Он же в 1675 заметил, что кольцо состоит из двух концентрических частей, разделённых тёмной полоской — «щелью Кассини». В 1675 О. Рёмер по наблюдениям затмений спутников Юпитера открыл конечность скорости света и измерил её.
Дальнейшее усовершенствование оптических инструментов пошло по другому пути. Ошибочно считая, что дисперсия света пропорциональна преломлению. Ньютон пришёл к заключению, что невозможно сделать объектив ахроматическим. Это явилось толчком к созданию рефлекторов, в которых изображение строится вогнутым зеркалом, принципиально лишённым хроматизма. Постепенное совершенствование искусства шлифовки зеркал, сделанных из сплава олова с медью, позволило делать рефлекторы всё больших размеров, допускающих очень сильные увеличения. Так, в 1789 В. Гершель (Англия) довёл диаметр зеркала до 122 см. Однако начиная с середины 18 в. рефракторы также получили существенное усовершенствование. В это время были созданы стекла с большой дисперсией (флинтглас), и объективы стали делать двойными, сочетая 2 сорта стекла. Наряду со значит. уменьшением хроматизма такие объективы были свободны и от сферической аберрации, что позволило во много раз сократить длину трубы, повысить проницающую силу инструментов и получать чёткое изображение без радужных каёмок.
При помощи новых инструментов искусные наблюдатели сделали много открытий, причём относящихся не только к телам Солнечной системы (таких, как открытие М. В. Ломоносовым в 1761 атмосферы у Венеры и исследование комет), но и к миру слабых и далёких звёзд. Так, были обнаружены многочисленные звёздные скопления и туманности (считавшиеся в то время также скоплениями, в которых из-за их удалённости не видны отдельные звёзды). Первые каталоги таких объектов были составлены во Франции Ш. Мессье (в 1771 и 1781); введённые им обозначения употребляют и поныне. В результате обширных систематических наблюдений В. Гершель обосновал ограниченность звёздной системы в пространстве и укрепил т. о. предположения И. Ламберта (1761) о существовании многих звёздных систем, из которых та, где находится Солнце, ограничивается Млечным Путём. Лишь в 20 в. эта теория «островной Вселенной» получила подтверждение и дальнейшую разработку.
Роль телескопа в А. далеко не исчерпывается такими открытиями. Может быть ещё важнее применение телескопа к точным угловым измерениям. У. Гаскойн в Англии (1640) поместил в фокусе телескопа нити, которые видны на фоне наблюдаемого объекта, и этим повысил точность визирования во много десятков раз. Им же был изобретён первый окулярный микрометр для измерений малых угловых расстояний между деталями изображения, одновременно видимыми в поле зрения телескопа. Ж. Пикар во Франции (1667) снабдил телескоп разделёнными кругами, по которым отсчитывались углы с точностью до секунды дуги; это определило и соответствующую точность измерений сферических координат звёзд, без чего не был бы возможен дальнейший прогресс в области астрометрии и звёздной А. Применив такой инструмент в работах по триангуляции во Франции, Пикар получил новые, более точные размеры земного шара, используя которые Ньютон открыл закон всемирного тяготения. Измеряя взаимные положения компонентов двойных звёзд с помощью окулярного микрометра, В. Гершель (1803) установил, что многие из них представляют собой физически связанные взаимным тяготением системы, состоящие из двух (а иногда и больше) звёзд, обращающихся вокруг общего центра масс по законам Кеплера. Этим была доказана действительная универсальность тяготения, действующего во всех местах Вселенной. Сравнивая свои телескопические определения координат звёзд со старыми греческими (Гиппарх, Тимохарис), Галлей обнаружил в 1718, что 3 яркие звезды — Альдебаран, Сириус и Арктур — изменили своё положение настолько, что это нельзя было объяснить ошибками старых наблюдений. Так были открыты собственные движения звёзд. К 1783 число звёзд с известным собственным движением возросло до 12; исследуя их, В. Гершель пришёл к заключению, что часть собственного движения каждой звезды является отражением движения Солнечной системы в пространстве и определил направление этого движения (в сторону созвездия Геркулеса). Всё это помогло начать изучение распределения и движения звёзд в системе Млечного Пути, получившей впоследствии название Галактики. Телескопические же наблюдения привели английского астронома Дж. Брадлея в 1725 к открытию явления аберрации света, которое он правильно объяснил конечной скоростью света, а в 1748 — к открытию нутации земной оси.
Одной из фундаментальных и трудных задач А. во все времена было определение астрономической единицы — среднего расстояния Земли от Солнца, которое является основной единицей измерений всех расстояний во Вселенной. Были проведены многие попытки решить проблему, но все они, по мере совершенствования методики и техники наблюдений, приводили всё к большим и большим значениям этой единицы. Первые близкие к истине результаты были получены методом, предложенным Галлеем, — наблюдением из разных точек Земли прохождений Венеры по диску Солнца в 1761, 1769, 1874 и 1882 и определением таким путём параллакса Солнца (последний, при известных размерах Земли, даёт возможность вычислить астрономическую единицу). Для наблюдений этих прохождений снаряжались многочисленные экспедиции. Первое из них было видимо на С. Европы и в Сибири. От Петербургской АН его наблюдал С. Я. Румовский в Селенгинске за Байкалом. Обработка всех наблюдений привела к значениям параллакса Солнца от 8,5" до 10,5". Прохождение в 1769 Румовский наблюдал в Коле, а И. И. Исленьев в Якутске. Однако возлагавшиеся надежды на точность определения параллакса Солнца не сбылись, и после открытия в 1801 малых планет, среди которых имеются весьма близко подходящие к Земле, появилась другая возможность определения этой важной астрономической постоянной. В итоге всех определений, выполненных в 19 в., для параллакса Солнца было принято значение 8,80", что соответствует значению астрономической единицы 149 500 000 км. В 60-х гг. 20 в., на основании радиолокационных измерений, для астрономической единицы принято значение 149,600 млн. км.
Фундаментальное значение имели первые определения расстояний до звёзд измерением годичных параллаксов. По мере совершенствования телескопических наблюдений становилось ясным, что параллаксы, представляющие собой перспективные смещения звёзд, вызванные годовым движением Земли вокруг Солнца, чрезвычайно малы. Попытки обнаружить эти смещения, начатые вскоре после гениального открытия Коперника и приведшие к ряду неожиданных открытий — аберрации света, физических двойных звёзд, невидимых спутников звёзд, — долгое время оставались безуспешными. Ко времени В. Гершеля выяснилось, что параллаксы даже наиболее близких звёзд не превышают 1", а такие углы и не могли быть измерены инструментами того времени. Лишь В. Я. Струве в 1837 в Дерпте и Ф. Бесселю в 1838 в Кенигсберге удалось впервые уверенно измерить параллаксы соответственно звезды Веги и 61 Лебедя. Т. о., был впервые определён правильный масштаб расстояний во Вселенной. Работы Струве и Бесселя были основаны на визуальных телескопических наблюдениях. С начала 20 в. измерения звёздных параллаксов стали производить исключительно астрофотографическими методами. Найденная впоследствии самая близкая к нам звезда имеет параллакс 0,76", что соответствует расстоянию в 1,3 парсека (4,3 световых: года).
Важным направлением А. явилось составление звёздных каталогов, содержащих точнейшие координаты звёзд. Их значение настолько велико, что они были названы фундаментом А. Они нужны как для научных целей, в частности для определения астрономических постоянных и исследования движений во Вселенной, так и для прикладных целей — геодезии, картографии, географических исследований, мореплавания, космонавтики. В этой области особенно большие заслуги имеют обсерватории: Гринвичская (основана в 1675), Пулковская (1839), Вашингтонская (1842) и обсерватория в Кейптауне в Юж. Африке (1820).