Универсальными называются О., построенные по функциональной схеме рис. 1. Запоминающие О. имеют трубку с накоплением заряда. Они сохраняют изображение сигнала длительное время и поэтому удобны для исследования однократных и редко повторяющихся сигналов (см. Запоминающая электроннолучевая трубка). Скорость записи запоминающих О. достигает нескольких тыс. км /сек. Время воспроизведения записанного изображения для различных моделей лежит в пределах 1—30 мин. Запоминающие О., как правило, обладают свойством сохранять изображение при выключении О. и последующем его включении через несколько суток, функциональная схема запоминающих О. отличается от рис. 1 дополнительным блоком, управляющим режимом работы запоминающей трубки (запись, воспроизведение изображения и его стирание).
В стробоскопическом О. используется принцип последовательного стробирования мгновенных значений сигнала для преобразования (сжатия) его спектра; при каждом повторении сигнала определяется (отбирается) мгновенное значение сигнала в одной точке. К приходу следующего сигнала точка отбора перемещается по сигналу, и так до тех пор, пока он не будет весь простробирован. Преобразованный сигнал, представляющий собой огибающую мгновенных значений входного сигнала, повторяет его форму. Длительность преобразованного сигнала во много раз превышает длительность исследуемого, и, следовательно, имеет место сжатие спектра, что эквивалентно соответствующему расширению полосы пропускания О. Стробоскопический О. наиболее широкополосны и позволяют исследовать периодические сигналы длительностью ~ 10—11 сек.
Скоростные О. имеют трубки с вертикально отклоняющей системой типа «бегущей волны». Они характеризуются широкополосностью (1—5×109 Мгц) и большой скоростью записи. Скоростные О. не имеют усилителя в тракте вертикального отклонения и, в отличие от стробоскопических, позволяют исследовать не только периодические, но и однократные быстропротекающие сигналы. Специальные О. служат для исследования телевизионных или высоковольтных сигналов и т.п.
Лит.: Вишенчук И. М., Соголовский Е. П., Швецкий Б. И., Электроннолучевой осциллограф и его применение в измерительной технике, М., 1957; Новопольский В. А., Электроннолучевой осциллограф, М., 1969; Чех И., Осциллографы в измерительной технике, пер. с нем. М., 1965; Выражение свойств электроннолучевых осциллографов. Рекомендации по стандартизации Международной электротехнической комиссии. Публикация № 351, М., 1971; Осциллографы электронно-лучевые. Каталог, М., 1971.
А. А. Каламкаров, А. И. Федоренчик.
Рис. 2. Универсальный осциллограф со сменными блоками.
Рис. 1. Упрощённая блок-схема электроннолучевого осциллографа.
Осциллографическая электроннолучевая трубка
Осциллографи'ческая электроннолучева'я тру'бка, электроннолучевая трубка для преобразования электрических сигналов в видимое графическое изображение. О. э. т. — основной элемент электронного осциллографа, где она используется для наблюдения формы и измерения амплитуды, длительности и др. параметров электрических сигналов. С целью фотографической или визуальной регистрации сигналов О. э. т. применяется также и в иной радиотехнической, электротехнической, медицинской, научной аппаратуре. Первая О. э. т. изготовлена немецким физиком К. Брауном в 1897 (т. н. трубка Брауна).
В О. э. т. сформированный прожектором пучок электронов, или электронный луч, проходит фокусирующую и отклоняющую системы и попадает на катодо-люминесцентный экран (см. Катодолюминесценция), выполненный изнутри, на дне баллона. В результате действия отклоняющей системы практически безынерционный луч вычерчивает на экране светящуюся линию, представляющую исследуемый сигнал в виде графической функции времени или др. параметра. Экраны имеют прямоугольную (отношение размеров сторон от 1 : 1 до 1 : 2) или круглую форму и размер диагонали или диаметром от 20 до 700 мм. Для визуального наблюдения используются люминофоры с белым или зелёным цветом свечения, для фоторегистрации изображений — с голубым или синим; длительность послесвечения экранов — от 10—7 до 20 сек. На внутреннюю поверхность дна баллона нередко наносится шкала для проведения беспараллаксного измерения (см. Параллакс).
По характеру регистрируемых сигналов и особенностям их воспроизведения основные типы О. э. т. подразделяют на низкочастотные, широкополосные (высоко — и сверхвысокочастотные), высоковольтные, запоминающие, многолучевые, с радиальным отклонением луча. Низкочастотные О. э. т. рассчитаны на полосу частот исследуемых переменных во времени процессов в диапазоне от нуля до десятков Мгц. Они имеют, как правило, электростатическую систему фокусировки и отклонения, достаточную чувствительность (отклонение луча до 5 мм /в), зелёный цвет свечения экрана. Широкополосные О. э. т. (рис.) позволяют исследовать сигналы в полосе частот от нуля до нескольких Ггц. Они превосходят другие типы О. э. т. по чувствительности (до 10 мм /в), скорости записи (до десятков тыс. км/сек) и разрешающей способности (ширина линии от 50 до 300 мкм). Расширение полосы частот достигается использованием вместо сигнальных пластин отклоняющей замедляющей системы с «бегущей волной», обычно в форме спирали, а высокая скорость записи — ускорением электронов после их отклонения (послеускорением) посредством высокого напряжения (8—25 кв). Высоковольтные О. э. т., применяемые для регистрации импульсов высокого напряжения, имеют очень малую чувствительность (от 0,05 до 20 мм /кв) и высокую электрическую прочность (до нескольких десятков кв). Запоминающие О. э. т. (потенциалоскопы) с видимым изображением, служащие для запоминания информации в виде электрических сигналов и воспроизведения их на экране, имеют наибольшее время хранения записанной информации (от нескольких десятков сек до нескольких ч). Многолучевые О. э. т., служащие для наблюдения на одном экране нескольких одновременно протекающих процессов, имеют в одном баллоне чаще всего 2, 5, 10 независимых низкочастотных электронно-оптических систем формирования лучей. В О. э. т. с радиальным отклонением луча, используемых для исследования явлений в полярной системе координат, луч при помощи двух пар отклоняющих пластин развёртывают по окружности. Напряжение сигнала подаётся на обкладки конического конденсатора и отклоняет луч в радиальном направлении. По параметрам эти О. э. т. близки к низкочастотным.
Лит.: Шерстнев Л. Г., Электронная оптика и электроннолучевые приборы, М., 1971; Миллер В. А., Куракин Л. А., Приёмные электроннолучевые трубки, 2 изд., М., 1971; Жигарев А. А., Электронная оптика и электроннолучевые приборы, М., 1972.
Г. И. Семеник, М. В. Цехонович.
Конструктивная схема широкополосной осциллографической электроннолучевой трубки: 1 — подогреватель катода; 2 — катод; 3 — электрод, ускоряющий электроны; 4 — коаксиальные вводы сигнала; 5 — электропроводящее покрытие; 6 — выводы системы послеускорения; 7 — катодолюминесцентный экран; 8 — спираль системы послеускорения; 9 — стеклянный баллон; 10 — горизонтальные отклоняющие пластины; 11 — спиральная отклоняющая система; 12 — анод; 13 — модулятор.
Осциллоско'п (от лат. oscillo — качаюсь и греч. skopéō — смотрю, наблюдаю), то же, что осциллограф; название «О.» употребляют редко, преимущественно в тех случаях, когда прибор используется только для визуального наблюдения быстро меняющихся во времени электрических процессов.
Осцилля'тор (от лат. oscillo — качаюсь), физическая система, совершающая колебания. Термином «О.» пользуются для любой системы, если описывающие её величины периодически меняются со временем.
Классический О. — механическая система, совершающая колебания около положения устойчивого равновесия.
В положении равновесия потенциальная энергия U системы имеет минимум. Если отклонения х от этого положения малы, то в разложении U (x) по степеням х можно считать U (x) = kx 2/2 (k — постоянный коэффициент); при этом квазиупругая сила F = . Такие О. называются гармоническими, их движение описывается линейным уравнением , решение которого имеет вид х = A sin (wt + j), где m — масса О., — частота, А — амплитуда колебаний, j — начальная фаза, t — время. Полная энергия гармонического О. Е = mw2А2/2 — это сумма периодически меняющихся в противофазе кинетической Т и потенциальной U энергий; Е = Т + U не зависит от времени. Когда отклонение х нельзя считать малым, в разложении U (x) необходим учёт членов более высокого порядка — уравнение движения становится нелинейным, а О. называется ангармоническим.