По сложившейся традиции, марки флюсов обычно указывают наименование разработчика и порядковый номер флюса. Так, флюсы, разработанные ИЭС им. Е. О. Патона, имеют сериал, обозначенный буквенными индексами «АН» (АН-348-А; АН-20; АН-22 и т. д.), что обозначает – «Академия наук» (в составе которой находится ИЭС им. Патона). Флюсы, предложенные НПО ЦНИИТМАШ, имеют сериал «ФЦ» – флюсы ЦНИИТМАШ.
Преимущество плавленых флюсов перед керамическими – это более высокие технологические свойства (защита, формирование, отделяемость шлаковой корки и др.) и меньшая стоимость. Преимуществом керамических флюсов является возможность в более широких пределах легировать металл шва через флюс. В промышленности применяют преимущественно плавленые флюсы.
Высококремнистыми и марганцовистыми флюсами являются флюсы ОСЦ-45 и АН-348-А, АН-348Ш, шихта которых состоит из марганцевой руды (МnО), кварцевого песка (SiO2) и плавикового шпата (фтористого кальция CaF2). Буква А в конце марки флюса обозначает, что грануляция крупная (для автоматической сварки), а буква ∅ – мелкая грануляция, т. е. для использования при полуавтоматической сварке шланговыми полуавтоматами.
Для автоматической наплавки под флюсом служат те же флюсы, что и для сварки. Наиболее распространены плавленые флюсы АН-348-А; ОСЦ-45; АН-20; АН-60; 48-ОФ-6; АН-26; АН-15М; АН-8; АН-25; АН-22; АНФ-6 в сочетании с легированными проволоками.
Основы электродуговой сварки
Электродуговая сварка получила наиболее широкое распространение в промышленности, мелкосерийном производстве и в кустарных мастерских. С применением электродуговой сварки в настоящее время осуществляется примерно 65 % сварочных работ. И именно она рекомендуется для применения домашним умельцам.
Источником нагрева и расплавления свариваемого металла при дуговых способах сварки является сварочная дуга, представляющая собой длительный мощный электрический разряд, происходящий в ионизированной среде между двумя электродами или электродом и деталью (рис. 9). При этом начальная фаза среды может быть любой: твердой (например, сварочный флюс); жидкой (например, вода); газообразной (например, аргон); плазменной. Температура в столбе сварочной дуги колеблется от 5000 до 12 000 К и зависит только от состава газовой среды дуги. Длиной сварочной дуги называют расстояние между концом электрода и поверхностью кратера (углубления) сварочной ванны.
Рис. 9. Электрическая сварочная цепь дуговой сварки:
1 – свариваемая деталь; 2 – сварочный электрод; 3 – сварочная дуга; 4 – сварочная ванна; 5 – источник питания дуги
Виды дуговой сварки различают по нескольким признакам: по среде, в которой происходит дуговой разряд (на воздухе – открытая дуга, под флюсом – закрытая дуга, в среде защитных газов); по роду применяемого электрического тока – постоянный, переменный; по типу электрода – плавящийся, неплавящийся. Наибольшее практическое значение получила ручная дуговая сварка плавящимися электродами на переменном и постоянном токах, дающая возможность сваривать в непроизводственных условиях большинство сталей, включая нержавеющие.
Для поддержания электрического разряда нужной продолжительности необходимо применение специальных источников питания дуги. Для питания дуги переменным током применяют сварочные трансформаторы, постоянным током – сварочные генераторы или сварочные выпрямители. При сварке постоянным током количество тепла на электродах различно, поэтому в сварке введено понятие полярности – прямой и обратной. Электрод, подсоединенный к положительному полюсу источника питания дуги, называют анодом, а к отрицательному – катодом. Таким образом, когда катод (—) источника подключен к электрододержателю, а анод (+) – к детали, это прямая полярность, наоборот – обратная.
При горении дуги и плавлении свариваемого и электродного металлов требуется защита расплава сварочной ванны от воздействия кислорода и азота воздуха, ибо последние ухудшают механические свойства металла шва. Поэтому защищают зону дуги, сварочную ванну, а также электродный стержень.
По характеру защиты свариваемого металла и сварочной ванны от окружающей среды дуговую сварку разделяют на следующие способы: с покрытыми электродами, в защитных газах, под флюсом, порошковой самозащитной проволокой.
Дуговая сварка покрытыми электродами[4]. При этом способе процесс выполняется вручную (рис. 10). Сварочные электроды могут быть плавящимися – стальными, медными, алюминиевыми и др. Наиболее широко применяют сварку стальными электродами, имеющими на поверхности электродное покрытие. Покрытие электродов готовится из порошкообразной смеси различных компонентов и наносится на поверхность стального стержня в виде затвердевающей пасты. Его назначение – повысить устойчивость горения дуги, провести металлургическую обработку сварочной ванны и улучшить качество сварки. Сварной шов образуют за счет расплавления металла свариваемых кромок и плавления стержня сварочного электрода. При этом сварщик вручную осуществляет два основных технологических движения: подачу покрытого электрода в зону сварки по мере его расплавления и перемещение дуги вдоль свариваемого шва.
Ручная дуговая сварка покрытыми электродами – один из наиболее распространенных способов, используемых при изготовлении сварных конструкций. Она отличается простотой и универсальностью, возможностью выполнения соединений в различных пространственных положениях и в труднодоступных местах. Существенный недостаток ее – малая производительность процесса и зависимость качества сварки от квалификации сварщика.
Рис. 10. Ручная дуговая сварка покрытыми электродами:
1 – деталь; 2 – стержень электрода; 3 – покрытие; 4 – дуга; 5 – сварочная ванна
Дуговая сварка неплавящимся электродом[5]. В настоящее время в качестве неплавящегося электрода используют преимущественно стержни из чистого вольфрама, реже из графита (рис. 11).
Рис. 11. Ручная дуговая сварка неплавящимися электродами:
1 – деталь; 2 – электрод; 3 – поток защитного газа; 4 – дуга; 5 – сварочная ванна; 6 – присадочный материал
Применяемые вольфрамовые электроды должны отвечать требованиям ГОСТ 23949–80. Они могут содержать активирующие добавки оксида лантана (ЭВЛ), иттрия (ЭВИ), диоксида тория (ЭВТ). Эти добавки облегчают зажигание и поддерживают горение дуги, повышают эрозионную стойкость электрода. Наибольшее распространение получили электроды ЭВЛ и ЭВИ ∅ 5–10 мм, выдерживающие большую токовую нагрузку. Из-за окисления вольфрамовых электродов и их быстрого разрушения для защиты не допускается использовать газы, содержащие кислород. Основным защитным газом является аргон или аргоно-гелиевая смесь. Наряду с инертными газами, для сварки вольфрамовым электродом используют и некоторые активные газы, например азот и водород, или их смеси с аргоном.
Дуговая сварка под флюсом[6]. Электрическая дуга здесь горит между плавящимся электродом и деталью под слоем сварочного флюса, полностью закрывающего дугу и сварочную ванну от взаимодействия с воздухом (рис. 12). Сварочный электрод выполнен в виде проволоки, свернутой в кассету и автоматически подаваемой в зону сварки. Перемещение дуги вдоль свариваемых кромок может выполняться или вручную, или с помощью специального привода. В первом случае процесс ведется с помощью сварочных полуавтоматов, во втором – с помощью сварочных автоматов. Дуговая сварка под флюсом отличается высокой производительностью и качеством получаемых соединений. К недостаткам процесса следует отнести трудность сварки деталей небольшой толщины, коротких швов и выполнение швов в основных положениях, отличных от нижних.
Рис. 12. Сварка под слоем флюса:
1 – деталь; 2 – слой флюса; 3 – дуга; 4 – электрод; 5 – сварочная ванна
Дуговая сварка в защитных газах[7]. Электрическая дуга горит в среде специально подаваемых в зону сварки защитных газов (рис. 13). Защитные газы изолируют сварочную ванну от атмосферного воздействия, поэтому металлургические процессы протекают только между элементами, содержащимися в основном и присадочном металлах. Наиболее эффективными являются инертные газы (аргон, гелий), которые не взаимодействуют с другими элементами. Защитная роль инертных газов значительно повышается при тщательной зачистке свариваемых кромок, на которых могут быть посторонние элементы, влияющие на химические процессы, происходящие в сварочной ванне. Роль активного газа СO2 сводится к оттеснению от сварочной ванны окружающего воздуха, и в первую очередь азота.