Почему я так много внимания уделяю несепарабельности? Ответ прост: одного этого принципа достаточно, чтобы объяснить наличие и физическую причину всего «сверхъестественного» в нашем предметном мире. Его одного достаточно, чтобы принять магию как неотъемлемую часть реальности. Пока это объяснение будет качественное, физикам-теоретикам не так-то легко подобрать удобную для практических целей количественную характеристику несепарабельности (меру квантовой запутанности). Трудность состоит в том, что для макроскопических тел характерно большое число качественно различных степеней свободы и различных взаимодействий с окружением — очень много каналов квантовой запутанности с окружением. Однако такая работа ведется, и уже предлагаются меры квантовой запутанности для систем произвольной размерности, о чем более подробно мы будем говорить в следующей главе.
Но для большинства из нас достаточно и качественного объяснения. Количественное описание нужно для практического применения квантовой запутанности в технических устройствах. Ведь мало кто из нас знает количественные законы, которым подчиняется ток в электрических цепях, но в общих чертах все мы представляем, что такое электричество. Количественное описание электрического тока необходимо для создания электротехники. Так же и с квантовой запутанностью (нелокальными квантовыми корреляциями): необязательно знать ее количественные законы — достаточно иметь качественное понимание основных ее особенностей. А количественное описание запутанности пусть используется при создании тех же квантовых компьютеров, квантово-криптографических систем и т. д. Другое дело, что вывод о наличии несепарабельности везде и всюду, даже на качественном уровне понимания, выходит далеко за рамки наших привычных, узких представлений о реальности, ограниченных «миром вещей», и многие могут быть не готовы его принять. Но сами нелокальные корреляции, как неотъемлемая часть объективной реальности, от этого не исчезнут, можно лишь как страус засунуть голову в песок и делать вид, что квантовой запутанности не существует.
На несепарабельность можно взглянуть еще с одной стороны: существует ли механизм образования замкнутой подсистемы с независимым вектором состояния, если изначально замкнутости подсистемы не было? Этот вопрос связан с другим: может ли человек при своей жизни в плотном теле оторваться от Бога и создать себе проблемы после смерти физического тела? Ведь всеобщность принципа несепарабельности предполагает его выполнимость не только в плотном классическом мире, но и на тонких планах реальности (на уровнях квантового ореола), которые не описываются классической физикой, но доступны для описания в квантовой теории.
Я полагаю, что такие ситуации возможны, и назову несколько их вариантов. Например, при ограниченном взаимодействии с окружением подсистему можно рассматривать как псевдочистое (квазизамкнутое) состояние в некоторых промежутках времени, порой даже больших. То есть в предельном случае человек может «замкнуться» на самого себя и после смерти физического тела довольно длительный срок будет иметь дело лишь с собственными «тараканами» и заморочками.
Другой вариант — опять-таки выделить различные степени свободы и рассматривать сепарабельность по одним из них и несепарабельность по другим. То есть на тонких планах человек будет «привязан» к отдельным своим страстям и порокам, но у него остается шанс после «чистилища», после освобождения от них приблизиться к Богу.
Есть еще один возможный исход. Когда в выделенной подсистеме есть сильное взаимодействие между ее внутренними составными частями, то связь с остальным окружением становится слабой (относительно внутренних связей), и внешняя запутанность «теряется» на фоне сильных взаимодействий внутри подсистемы. Это близко к тому, что происходит в плотном мире, когда сильные взаимодействия «забивают» нелокальные связи. Аналогична ситуация с тонкими структурами типа эгрегоров, у которых внутренние связи тоже сильнее внешних, и они существуют в виде относительно самостоятельных (сепарабельных) квазизамкнутых структур. Среди них есть и демонические структуры, в которые попадает человек после смерти физического тела, если он в своей жизни руководствовался сугубо материальными, плотскими интересами. Например, тот, для кого при жизни в плотном теле были исключительно важны деньги, будет являться частью энергетического тела денежного эгрегора — одной из самых сильных демонических структур, щедро подпитываемой нашими «психическими выделениями» с плотного плана реальности.
2.9. Состояния, энергия, энтропия
На Вселенную иногда смотрят как на скопление энергетических полей. Такой взгляд хорошо соответствует представлениям квантовой теории, в которой доказывается, что «все есть энергия», что энергия — это основная величина, определяющая состояние системы (любого размера, вплоть до Универсума), и, исходя из энергетической характеристики объекта, можно определить среднее значение других физических величин, характеризующих систему. Более того, квантовая теория сегодня способна количественно описать, как возникают все эти «скопления энергетических полей», как появляются локальные энергетические объекты с различной плотностью энергии, в том числе и наш плотный предметный мир, из нелокального квантового источника, в котором изначально нет никаких энергетических неоднородностей. Квантовая теория способна описывать как переходы объекта из менее плотного энергетического состояния в более плотное, так и обратный процесс.
В квантовой механике нет таких проблем с понятием «энергия», как в классической физике, где нет четкого и однозначного ее определения. В квантовой теории эта величина вводится непосредственно из аксиоматики квантовой механики, исходя из основополагающего понятия «состояние». Каждому состоянию в квантовой теории соответствует определенное значение энергии, то есть энергия квантуется в соответствии с различными состояниями системы.
Можно сказать, что энергия в квантовой теории — это обобщение всех известных (и неизвестных) энергий в классической физике, и она связана лишь с состоянием системы. В квантовой теории просто не может быть никаких неизвестных энергий, поскольку в качестве энергии мы можем задать любую (разумную, подходящую) функцию состояния системы. Можно задать и целый набор таких функций, то есть рассматривать совокупность энергий тварного и нетварного мира. Любое изменение состояния системы, например, любая наша мысль, чувство, желание и т. п., с точки зрения квантовой теории, связаны с изменением ее энергии, поскольку последняя — это функция состояния системы, и если меняется состояние — меняется и энергия.
Понятие «состояние» в квантовой механике непосредственно не связано с привычными классическими характеристиками системы (массой, скоростью и т. д.). Эти величины вторичны, и для нелокальных состояний они просто неприменимы. Энергия в этом отношении — более универсальная величина, ее можно использовать во всех случаях. Для физических объектов (если мы не рассматриваем, например, в терминах квантовой теории текстовое сообщение) состояние системы может быть описано в терминах одной ее характеристики — энергии. Обычно предполагается, что энергия должна быть определена в некотором заданном интервале. Все наблюдаемые физические величины, в том числе классические, можно получить из матрицы плотности. В случае замкнутой системы матрица плотности записывается через вектор состояния в виде проектора. Таким образом, матрица плотности в энергетическом представлении (и вектор состояния для замкнутой системы) отражает реальное, объективное состояние системы с определенным энергетическим спектром.
В целом, можно сказать, что квантовая теория изучает физические законы, которым подчиняются любые энергетические структуры (независимо от их размера и типа энергии). В настоящее время квантовая механика приступила к изучению физических процессов, в результате которых энергетические структуры возникают из нелокального состояния и уплотняются (декогеренция), а также обратных процессов — разуплотнения энергетических структур, перехода их в менее плотное состояние (возрастание квантовой запутанности), вплоть до полного «растворения» и потери своей внутренней структуры — чистого нелокального состояния. Особо подчеркну, что это не просто теоретизирование. То, что эти процессы действительно существуют в окружающем мире, подтверждается многочисленными физическими экспериментами, которые показывают адекватное соответствие теоретическим предсказаниям. Более того, эти процессы применяются на практике в технических устройствах, о чем уже неоднократно упоминалось.