Раз ЯМР требует сильного поля, надо сделать так, чтобы были и волки сыты и овцы целы, т. е. ухитриться обеспечить обмен энтропией между резервуарами зеемановской и дипольной энергии в таком поле. Трудность заключается в том, что зеемановская энергия квантована в квантах, скажем, по сто мегагерц каждый, в то время как спектр дипольной энергии простирается на протяжении не более ста килогерц. В сильном поле эти системы, как говорятся, друг с другом не разговаривают. Однако существует возможность обеспечить поток энергии, а значит, и энтропии между ними, если снабдить дипольную систему энергией, которой ей не хватает, чтобы «разговаривать» с зеемановской системой. Это снабжение осуществляется радиочастотным полем, вращающимся с частотой Ω, близкой к зеемановской частоте Ω0. Одну из этих частот (обыкновенно зеемановскую Ω0) медленно (адиабатически) изменяют, начиная со значения, отдаленного от Ω, до самого Ω, т. е. до резонанса. При резонансе большая часть энтропии неупорядоченной дипольной системы переходит в зеемановскую систему или, что то же самое, большая часть зеемановского порядка переходит в дипольную систему. Затем радиочастотное поле выключается, и обе системы, зеемановская и дипольная, становятся сноваизолированными друг от друга.
Казалось бы, что после этого можно было бы просто забыть про существование сильного магнитного поля, но это не так. Хотя выключение радиочастотного поля останавливает переход энергии из одной системы в другую, можно показать (мы не будем здесь этого делать), что само присутствие сильного поля делает некоторые части дипольного взаимодействия неэффективным и что эти части необходимо отбросить. Эффективная часть взаимодействия, обыкновенно называемая «усеченной» (truncated), имеет ту особенность, что ее форма и величина зависят от ориентации сильного магнитного поля по направлению к осям монокристаллическогообразца, что очень важно.
Предыдущие соображения можно уточнить, если ввести понятие вращающейся системы координат. Чтобы описать поведение спинов в присутствии вращающегося поля, удобно выбрать систему координат, которая вращается с угловой скоростью П этого поля. В этой системе вращающееся поле с амплитудой Н1, ортогональное к сильному полю Я, становится статическим полем Н1, что, конечно, гораздо проще. Но не надо забывать, что новая система координат, ввиду того что она вращается, не является инерциальной и что нужно учесть инерциальные силы. Можно показать, что для этого достаточно заменить внешнее поле H фиктивным полем ДЯ = (Я — H*), где Я* — значение поля Я при резонансе, когда По = П. Во вращающейся системе спинам «кажется», что они испытывают эффективное поле Нe, которое является геометрической суммой двух статических полей ΔH и Н1, ортогональных друг к другу. Операция, которая приводит к обмену энтропией между зеемановской и дипольной системами, называется Адиабатическим Размагничиванием во Вращающейся Системе, АРВС. (Adiabatic Demagnetisation in the Rotating Frame, ADRF). Вдали от резонанса эффективное поле Hе почти параллельно внешнему полю Я, а, значит, также и равновесной намагниченности М. Во время АРВС намагниченность «следует» за эффективным полем Не, направление которого отклоняется от направления поля Я тем более, чем ближе к резонансу. При резонансе фиктивное поле ДЯ обращается в нуль, а эффективное поле He сводится к полю Н1. АРВС завершают, выключая это поле H1. Если начальная поляризация была достаточно высокой, наблюдается дипольный дальний порядок.
Надо заметить, что, если АРВС начинать с той стороны резонанса, где ДЯ = (Я — H*) антипараллельно внешнему полю Я, значит, АРВС было начато исходя из состояния, где равновесная намагниченность М, которая, конечно, параллельна внешнему полю Я, была антипараллельна эффективному полю He. С точки зрения вращающейся системы спины находились в состоянии с отрицательной температурой. Знак температуры сохраняется на протяжении АРВС и при его завершении ведет к дапольному состоянию с отрицательной температурой.
Так как АРВС проводится в сильном внешнем поле, по его окончании возможно употребить ЯМР, чтобы наблюдать свойства размагниченного состояния спинов и, как было сказано раньше, решить таким образом проблему «лампы в холодильнике». Но АРВС позволяет к тому же осуществить новые замечательные вариации на тему обыкновенного дипольного порядка. Во-первых различные ориентации внешнего поля по отношению к осям образца приводят к различным формам дальнего порядка. Во-вторых для каждой ориентации поля противоположные знаки спиновой температуры тоже приводят к различным дипольным структурам. Не надо забывать, что при отрицательной температуре стабильной структурой является та, которая максимизирует энергию. Время жизни упорядоченного состояния спинов, в котором абсолютное значение их температуры в миллион раз ниже температуры окружающей их среды, ограничено временем спин-решеточной релаксации дипольной энергии Td, которое короче на несколько порядков обыкновенного зеемановского времени релаксации Т1. Тем не менее при благоприятных условиях значение Td может превысить час, что делает изучение дальнего дипольного порядка вполне возможным.**
Старт
Мне кажется, что большинство идей, изложенных выше, были у меня на уме, по крайней мере в качественной форме, в 1965 году, когда я предложил двум из моих лучших сотрудников — двум Морисам — Морису Шапелье и Морису Гольдману (Maurice Chapellier, Maurice Goldman) — заняться со мной этим делом, предварительно успешно преодолев «пробу на кислую реакцию» моего присяжного критика Жака Винтера.
В 1965 году Шапелье было двадцать семь, Гольдману — тридцать два, мне — пятьдесят, и ни один из нас не был политехником. Вклад Морисов в наше совместное предприятие трудно преувеличить, и я был очень рад, когда несколько лет спустя они разделили со мной самую крупную премию нашей академии. В следующие годы наша маленькая команда обогатилась другими участниками, которых я назову позже.
Постепенно Шапелье удалился от нас (это было в начале семидесятых годов), чтобы работать в области низких температур, но в первых наблюдениях ядерного магнитного порядка он был главным действующим лицом.
Деятельность Гольдмана оставалась тесно связанной с моей собственной до моего ухода в 1985 году. Он прослужил четырнадцать лет моим заместителем на кафедре в Коллеже. Его вклад в теорию ядерного магнитного порядка неоценим: там мало пунктов, в которых бы он не принимал участия. Мы написали вместе обширную монографию, которая вышла в свет в 1982 году под заглавием «Ядерный магнетизм: порядок и беспорядок» (Nuclear magnetism: order and disoder; имеется русский перевод). Там мы рассматривали лишь области ядерного магнетизма, к которым испытывали влечение, что объясняет отсутствие биохимических и медицинских применений ЯМР. Львиная доля была отдана спиновой температуре, динамической ядерной поляризации и, конечно, ядерному магнитному порядку, который я впредь буду сокращать в ЯМП. Теории ЯМП посвящена целая глава, где Гольдман больше напирал на строгость, а я — на ясность.