Кое-чего из инструментария математика, описанного Хинчиным, — "неустанного научного общения" и "возможности пользоваться более или менее солидной библиотекой" — советские ученые были лишены. У них оставались бумага, карандаши и творческие силы.
Но важнее всего то, что математическое сообщество избежало первой волны репрессий: математика оказалась слишком сложной дисциплиной для пропаганды. Правда, почти за сорок лет правления Сталина выяснилось, что уничтожить можно все — сложность не помеха. Советскую математику спасло то, что в критический момент она спустилась с небес на землю и сумела стать незаменимой. Ее спасла Вторая мировая война и последовавшая за ней гонка вооружений.
Германия напала на СССР 22 июня 1941 года. Три недели спустя у РККА почти не осталось современных самолетов: многие из них были уничтожены еще на аэродромах. Военные попытались использовать гражданские самолеты в качестве бомбардировщиков, но возникла проблема: они летали медленнее и ниже военных. Учить летчиков сбрасывать бомбы на низких скоростях с малых высот пришлось математикам.
Величайший российский математик XX века Андрей Николаевич Колмогоров вернулся из казанской эвакуации в Москву, снабдил арифмометрами группу своих студентов и аспирантов из МГУ, и они за несколько недель выполнили расчеты. Когда новые таблицы бомбометания были готовы, Колмогоров занялся теорией стрельбы.
К началу войны Андрею Колмогорову было 38 лет. Он был членом Президиума Академии наук СССР (это делало его одним из самых влиятельных ученых в стране) и обладал мировой известностью благодаря своим работам по теории вероятностей. Кроме того, он был невероятно успешным преподавателем. К концу жизни он выступил научным руководителем 79 диссертаций, дал начало традиции математических олимпиад и заложил основу советских математических школ. Во время Второй мировой Колмогоров поставил свой талант на службу государству — и доказал, что без математиков оно существовать не может.
Великая Отечественная война закончилась 9 мая 1945 года. В августе США разбомбили Хиросиму и Нагасаки. Сталин в течение нескольких месяцев хранил молчание. Когда он вскоре после своего "переизбрания" заговорил, то пообещал, что СССР опередит Запад в разработке атомного оружия. К этому времени армию физиков и математиков, способную конкурировать с американским Манхэттенским проектом, собирали почти год. Молодых ученых отзывали с фронта и даже освобождали из лагерей, чтобы они тоже приняли участие в ядерной гонке.
После Второй мировой войны СССР бросил все силы на развитие ВПК. Спешно были построены примерно 40 закрытых городов, в которых поселили ученых, в том числе математиков. Срочная мобилизация напоминала Манхэттенский проект, однако в куда более крупном масштабе. Точное число людей, работавших во второй половине XX века над советскими военными проектами, неизвестно. Предполагают, что их было около 12 миллионов.
Несколько миллионов ученых трудились в секретных НИИ. Молодого физика или математика с большей вероятностью направляли в какой-нибудь оборонный институт, чем в гражданское учреждение. Работа в "оборонке" влекла за собой почти полную научную изоляцию. Для сотрудников секретных НИИ, даже если у них не было доступа к действительно секретной информации, любой контакт с иностранцем считался не просто подозрительным — ученого могли счесть изменником. Иногда работа на ВПК требовала проживания в одном из закрытых городов. Там можно было жить с комфортом, однако не было возможности контактировать с коллегами извне. В отсутствие научного общения бумага и карандаш были безобидными. Поэтому властям удавалось прятать от мира некоторых лучших математиков страны.
После смерти Сталина в 1953 году представление СССР о том, как к нему должен относиться весь остальной мир, изменилось: теперь Союз хотел, чтобы его не только боялись, но и уважали. И если большинство математиков помогали строить ракеты и бомбы, избранное меньшинство теперь поддерживало международный престиж страны. В конце 1950-х "железный занавес" приподнялся, образовав крошечную щель. Этого было недостаточно для полноценного взаимодействия советских математиков с иностранными, но хватало для демонстрации научных достижений СССР.
К 1970-м советский математический истеблишмент вполне сложился. Это была тоталитарная система, вложенная в другую тоталитарную систему. Она обеспечивала своих обитателей не только работой и деньгами, но и жильем, пропитанием, транспортом. Она определяла, где им жить, а также когда и как им добираться на работу или курорт. Система была внимательной, строгой и заботливой матерью. Ее дети всегда были обихожены и накормлены: ученые составляли привилегированную группу в сравнении почти со всем остальным населением СССР. Когда начинался товарный дефицит, "официальные" математики и другие ученые могли отовариваться в "распределителях".
Поскольку в СССР частной собственности на недвижимость не было, обычные граждане получали жилье от государства, а члены математического истеблишмента — от своих институтов. Квартиры математиков обычно были просторнее и находились в более престижных районах, чем квартиры их непривилегированных соотечественников.
Наконец, у членов математического истеблишмента была еще одна, редчайшая для советского гражданина привилегия — поездки за границу. Однако поездка, скажем, на какую- нибудь научную конференцию зависела не столько от желания самого ученого, получившего приглашение, сколько от Академии наук, парторганизации и органов госбезопасности. Они же решали, кто составит ученому компанию, насколько долгой будет поездка и где он будет жить. Например, Сергею Новикову, первому советскому лауреату премии Филдса, власти не позволили в 1970 году поехать в Ниццу за своей наградой, и он смог получить ее только год спустя, когда в Москве собрался Международный конгресс математиков.
Математический истеблишмент был жестоким и трусливым мирком, основанным на интригах, доносах и подсиживании: даже для его членов ресурсов хватало не всегда. Приличных квартир всегда было меньше, чем людей, желающих их получить, а желающих посетить зарубежную конференцию — больше, чем тех, кому позволяли выехать за рубеж.
Барьер для вступления в этот закрытый клуб был практически непреодолимым: ученый должен был быть беззаветно верен не только идеям коммунизма и КПСС, но и действующим представителям самого математического истеблишмента. Евреям и женщинам вход туда, как правило, был заказан. Кроме того, из истеблишмента могли выгнать за плохое поведение. Это произошло, например, с учеником Колмогорова Евгением Дынкиным, организатором Вечерней математической школы при МГУ и одним из ведущих преподавателей московской матшколы, где процветало непростительное вольнодумство. Другой ученик Колмогорова, Леонид Левин, был подвергнут остракизму за связь с диссидентами: "Я стал обузой для всех, с кем был связан; мне стало нельзя работать в серьезных научных учреждениях и даже неловко ходить на семинары (участников просили сообщать о моих посещениях). Мое существование в Москве начинало выглядеть бессмысленным". Дынкину и Левину пришлось уехать из СССР. Вскоре после приезда в США Леонид Левин узнал, что проблему, о которой он рассказывал на семинарах в Москве и которая отчасти была связана с работами Колмогорова по теории множеств, независимо от него сформулировал Стивен Кук, американский теоретик вычислительных систем. Кук и Левин (теперь он преподает в Бостонском университете) считаются соавторами гипотезы о равенстве классов Р и NP, также известной как теорема Кука—Левина, — одной из семи "задач тысячелетия". Суть гипотезы такова: существует ли задача, проверка правильности решения которой займет больше времени, чем поиски решения?