Пусть P и Q — два множества. Составим их произведение R, т.е. множество всех пар (x, y), где xÎP, yÎQ. В множестве R выделим некоторое подмножество Q. О парах (x, y), попадающих в Q, будем говорить, что они находятся в отношении. Понятие отношения между элементами x и y, принадлежащими множествам P и Q, вводилось в 4-м классе. Обстоятельно и громоздко объяснялось на многочисленных примерах конечных множеств. После этого в 6-м классе вводилось понятие функции, опирающееся на понятие отношения, примерно следующим образом: функцией называется отношение, при котором каждая точка x множества P находится в отношении не более чем с одной точкой y множества Q. Подмножество множества P, состоящее из всех таких x, которые находятся в отношении с некоторыми точками y множества P, называется областью задания функции. А множество всех таких элементов y множества Q, которые находятся в отношении к некоторым элементам x множества P, называется областью значений функции. Отсюда возникла новая проблематика отыскания области задания функции и области её значений. Малосодержательные и ни для чего не нужные упражнения по этой проблематике вошли в задачники.
Вполне созвучное с теоретико-множественной идеологией понятие преобразования вошло как основное в геометрию. Возникло следующее определение вектора: вектором называется преобразование пространства, при котором... далее перечисляются свойства, означающие, что это преобразование есть трансляция пространства. Естественное и нужное для всех определение вектора как направленного отрезка было отодвинуто на задний план.
Школьники если бы и могли освоить все эти определения, то, во всяком случае, в результате огромного труда и затраты времени, благодаря чему основное содержание математики, т.е. умение производить алгебраические вычисления и владение геометрическим чертежом и геометрическим представлением, отодвигалось на задний план. И даже вовсе уходило из поля зрения учителей и школьников[1].
Внедрение теоретико-множественной идеологии в школьную математику, несомненно, соответствовало вкусам А. Н. Колмогорова. Но само это внедрение, я думаю, уже не находилось под его контролем. Оно было перепоручено другим лицам, малоквалифицированным и недобросовестным. Здесь сказалась черта характера Колмогорова. С охотой принимаясь за новое дело, Колмогоров очень быстро охладевал к нему и перепоручал его другим лицам. При написании новых учебников, по-видимому, произошло именно это. Составленные в описанном стиле учебники печатались миллионными тиражами и направлялись в школы без всякой проверки Отделением математики АН СССР. Эту работу осуществляли под руководством Колмогорова методисты Министерства просвещения СССР и Академии педагогических наук. Жалобы школьников и учителей безжалостно отвергались бюрократическим аппаратом министерства и Академии педагогических наук. Старые опытные учителя в значительной степени были разогнаны. Этот разгром среднего математического образования продолжался более 15 лет, прежде чем он был замечен в конце 1977 года руководящими математиками Отделения математики АН СССР. Ответственность за происшедшее лежит, конечно, не только на одном А. Н. Колмогорове, Министерствах и Академии педагогических наук, но также и на Отделении математики, которое, поручив Колмогорову ответственную работу, совсем не интересовалось тем, как она осуществляется.
После того как катастрофа была замечена и начал намечаться отпор происходящему, лица, каким-то образом заинтересованные в том, чтобы разгром продолжался, стали сопротивляться. В телевизионной передаче «Сегодня в мире» я сам слышал выступление комментатора В. Зорина, в котором он сообщал, что среднее математическое образование в Советском Союзе поставлено очень хорошо и что ему даётся высокая положительная оценка печатью Соединённых Штатов. Это было уже в самом конце 70-х годов. Нет сомнений, что похвала врагов есть дурной признак. Стоит заметить, что сам А. Н. Колмогоров в это время получил Государственную премию Израиля. Возможно, там высоко оценили тот разгром, происходящий в средней школе Советского Союза.
После того как в конце 1977 года до математиков, занимающихся наукой, наконец-то дошло, что в средней школе неблагополучно, десять академиков-математиков обратились с письмом в ЦК. В этом письме мы выражали тревогу по поводу происходящего в школе.
После этого в 78-м году министр просвещения СССР М. А. Прокофьев обратился в Отделение математики АН СССР с просьбой заняться вопросами преподавания. В результате состоялось сперва заседание Бюро Отделения математики, а затем Общее собрание Отделения математики, на котором присутствовали представители Министерств просвещения СССР и РСФСР. Был также и А. Н. Колмогоров. Как на Бюро, так и на Общем собрании Отделения были решительно осуждены действующие учебники и учебные программы. Общее собрание Отделения продолжалось много часов и происходило в большом накале.
Рассматривались конкретные дефекты учебников, и подавляющему большинству присутствующих было совершенно ясно, что так оставаться дальше не может. Решительными противниками каких бы то ни было действий, направленных на исправление положения, были академики С. Л. Соболев и Л. В. Канторович, которые говорили, что надо подождать. Но, несмотря на их сопротивление, было принято решение, требующее вмешательства в вопросы преподавания в средней школе. В частности, было вынесено решение об организации комиссии по преподаванию при Отделении. Выполнение этого решения было поручено Бюро Отделения. Следующее заседание Бюро Отделения занялось образованием комиссии по преподаванию. И здесь возникли разногласия между математиками не по существу, а по тому, кто же будет возглавлять дело.
Обнаружилось, что имеется два претендента — академики А. Н. Тихонов и И. М. Виноградов. И оба они были в какой-то степени поддержаны. Поэтому было принято осложняющее всё дело решение образовать две комиссии. Одну под председательством Тихонова, другую — под председательством Виноградова. Наличие двух комиссий указывало на раскол между математиками и затрудняло работу. В результате длинных перипетий в Отделении, продолжавшихся около трёх лет, обе комиссии были ликвидированы и была образована одна новая комиссия, которую возглавил Виноградов и которая называется комиссией по преподаванию математики в средней школе. Я был единственным заместителем Виноградова.