В чем состоит разница между двумя опросами? Опрос SPF проводится анонимно: каждый экономист получает случайный номер, не меняющийся от опроса к опросу, однако у читателей нет никакой возможности понять, кто скрывается за тем или иным номером. В рамках опроса «голубых фишек» прогноз каждого участника подкрепляется его именем и репутацией.
Если рядом с прогнозом стоит ваше имя, это может привести к изменению структуры ваших стимулов. Допустим, вы работаете на малоизвестную компанию. В этом случае для вас может иметь смысл создавать достаточно дикие прогнозы – пусть они и не будут сбываться достаточно часто, но в случае успеха вам гарантировано должное внимание. С другой стороны, сотрудники компаний типа Goldman Sachs должны вести себя более консервативно, для того чтобы оставаться в рамках консенсуса.
Именно это и было выявлено в результате исследования прогнозов Blue Chip{439} – довольно заметное явление под названием «искажения из соображений рациональности»{440}. Чем менее известно ваше имя, тем меньше вы можете потерять, принимая на себя риски, связанные с прогнозами. Даже если вы знаете, что вы немного лукавите в своем прогнозе, для вас может иметь смысл попытаться сделать большую ставку. С другой стороны, если у вас уже имеется серьезная репутация, вы, возможно, не захотите слишком отклоняться от общей точки зрения, даже в том случае, когда, по вашему мнению, это следует из имеющихся данных.
Каждое из этих опасений, связанных с вашей репутацией, способно отвлечь вас от основной цели – создания наиболее честных и точных прогнозов. Несмотря на довольно незначительные различия, исторические данные по анонимным участникам SPF показывают, что им удавалось немного лучше предсказывать показатели ВВП и безработицы, чем участникам экспертов из «голубых фишек», заботящихся о своей репутации{441}.
Если оказалось, что создавать плохие прогнозы рационально, то можно предположить, что у таких прогнозов есть свой рынок и есть потребители, способствующие их развитию. Подобно тому как в политике существует целая группа экспертов, делающих карьеру на том, что они предлагают довольно дикие идеи аудиториям, состоящим из представителей той или иной партии, в экономике также имеются свои «медведи», «быки» и прочие участники, которые всегда захотят прислушаться к вашим выводам. Иногда экономические прогнозы напрямую связаны с политическими целями (расчеты показывают, что экономические прогнозы, созданные Белым домом, исторически были одними из самых неточных{442}, вне зависимости от того, кто занимал пост президента – демократ или республиканец).
Однако, когда речь заходит об экономическом прогнозировании, ставки значительно повышаются. Как отметил Роберт Лукас, линия между экономическим прогнозированием и экономической политикой достаточно размыта. Плохой прогноз способен ухудшить ситуацию в реальной экономике.
Впрочем, можно надеяться, что процесс экономического прогнозирования значительно улучшится в дальнейшем за счет использования новых технологических усовершенствований. Например, поисковый трафик Google может уже сейчас служить опережающим индикатором для ряда экономических показателей, таких как уровень безработицы.
«Давайте рассуждать: показатель запросов, связанных со страховками на случай потери работы, может служить хорошим индикатором, предсказывающим уровень безработицы, а тот, в свою очередь, хорошим индикатором, предсказывающим уровень экономической активности», – рассказывал мне главный экономист Google Хэл Вариан во время моего визита в головной офис Google в Маунтин-Вью, штат Калифорния.
«Мы можем предсказать рост количества таких страховок заранее. Если вы работаете в компании, в которой начинают ходить слухи о сокращении штатов в ближайшем будущем, сотрудники начинают создавать поисковые запросы типа “Где находится ближайший офис бюро занятости”, “как подавать заявление на бирже труда” и т. д. Так что это вполне может рассматриваться как некий опережающий индикатор». Тем не менее история прогнозирования в экономике и других областях показывает, что технологические усовершенствования не приносят особой пользы, если они компенсируются человеческими предубеждениями. У нас нет серьезных оснований считать, что экономическое прогнозирование не подвержено влиянию таких предубеждений. Например, прогнозисты, по всей видимости, ничему не научились на опыте с Великой рецессией. Если посмотреть на прогнозы роста ВВП, сделанные участниками SPF в ноябре 2011 г. (рис. 6.6), то мы увидим, как проявляется та же самоуверенность, что и в 2007 г. Экономические сценарии, как позитивные, так и негативные, создаются с невероятной лихостью, никак не учитывающей степень исторической правильности прежних прогнозов{443}.
Рис. 6.6. Прогнозируемое распределение вероятностей: реальный рост ВВП США (2012 г.) и исторические ошибки прогнозирования (по данным SPF, ноябрь 2011 г.)
Если мы захотим снизить влияние таких искажений – а мы никогда не сможем избавиться от них полностью, – то у нас имеются два фундаментальных альтернативных способа. Первый связан с предложением точных экономических прогнозов, а второй – со снижением спроса на неточные или слишком самоуверенные прогнозы. Робин Хэнсон, экономист Университета Джорджа Мэйсона, относится к серьезным защитникам первого подхода. Мы встретились с ним за обедом в одном из его любимых марокканских ресторанов в Северной Виргинии. Робину уже за 50, но выглядит он значительно моложе (несмотря на довольно большую лысину). Он склонен к эксцентричным поступкам. Так, он планирует, что после смерти его голова будет заморожена в криогенной камере{444}. Кроме этого, он поддерживает идею системы, которую сам называет «футархией» (futarchy), при которой решения политических вопросов принимаются не политиками, а по итогам работы рынков предсказаний{445}. Совершенно очевидно: этот человек не боится бросить вызов общепринятым точкам зрения.
«Я думаю, что самый интересный вопрос состоит в том, как мало усилий мы в реальности прикладываем к прогнозированию даже тех вещей, которые, по нашим словам, для нас крайне важны, – сказал мне Хэнсон, как только нам принесли обед. – В школах MBA часто рисуется образ менеджера как автора великих решений – человека, принимающего решения “по науке”. У него есть электронные таблицы, статистика, и он умеет взвешивать различные варианты. Однако на практике менеджмент значительно сильнее связан с управлением коалициями, поддерживающими тот или иной проект. В случае если вы создали коалицию, а затем в самый последний момент прогнозы начинают меняться, вы же не отбрасываете проект в сторону?»
«Судя по всему, в сборе данных о качестве исторических прогнозов не заинтересованы даже академические ученые, – добавил он позже. – Возможно, они не видят в этом смысла? Куда более фундаментальная проблема состоит в том, что в нашем обществе есть спрос на экспертов, но нет спроса на точные прогнозы». В качестве решения этой проблемы Хэнсон пропагандируют идею создания рынков предсказания – систем, в которых вы можете делать ставки на определенный экономический или политический исход, например, вступит ли Израиль в войну с Ираном или насколько вырастет глобальная температура вследствие климатических изменений. Его точка зрения в данном вопросе достаточно проста: возникающие при этом методе финансовые риски заставляют нас быть более точными и не пытаться хорошо выглядеть в глазах других.
Мы еще вернемся к идее рынков предсказаний в главе 11. Разумеется, она не является панацеей, особенно если мы допустим ошибку и предположим, что эта система никогда не может ошибаться сама по себе. Однако, по словам Хэнсона, она способна улучшить, хотя бы отчасти, систему стимулирования экспертов.
Эта система может применяться, например, для оценки макроэкономических переменных типа величины ВВП или уровня безработицы. Уже сейчас имеется довольно много прямых и косвенных способов делать ставки на величину показателей инфляции, процентных ставок и цены на товары, но пока что не создано сколь-нибудь важного рынка для оценок ВВП.
У таких рынков может найтись своя аудитория. Не так давно четко проявлялась корреляция между ценами на акции и макроэкономическими рисками{446}, поэтому в данном случае они могут выступать в качестве своеобразного инструмента хеджирования. Эти рынки смогут также предоставлять информацию в режиме реального времени политикам, выступая, по сути, инструментом постоянного обновления прогнозов по ВВП. Если добавить в систему несколько вариантов ответа – скажем, ставки на то, что ВВП вырастет на 5 % и снизится на 2 %, – это позволит наказать слишком самоуверенных прогнозистов и обеспечит более надежные расчеты неопределенностей, присущих прогнозированию экономики.