Созданный к сегодняшнему дню нейроанимат состоит из двух основных частей. Это собственно робот — пока что простейшая машинка из конструктора с двигателем и набором датчиков и главная часть — нейронная сеть, управляющая роботом. Ее — и это наиболее интересно — ученые выращивают искусственно из живых клеток мозга мышей или крыс. Клетки извлекают из гиппокампа — отдела мозга, отвечающего у всех живых существ за кратковременную память и ориентацию в пространстве. Затем несколько десятков тысяч нейронов помещают в стеклянную камеру около полутора сантиметров в диаметре. В нее заранее залита специальная питательная среда, схожая с той, что имеется в настоящем мозге. На дне камеры — мультиэлектродная матрица из 60 электродов размером порядка 30 микронов каждый, вокруг которых и располагаются нейроны.
«Извлечь нейроны из эмбриона животного и посадить их на матрицу с электродами — это еще даже не полдела», — поясняет кандидат физико-математических наук, руководитель экспериментальных работ по проекту нейроанимата, сотрудник кафедры нейродинамики и нейробиологии Алексей Пимашкин. Из-за того что ученые берут в работу не целый отдел живого мозга, а лишь отдельные нейроны, связи между ними прерываются. Необходимо их выстроить заново, фактически создав новую живую нейронную сеть. Для Создателя, может, и простая задачка, но как с ней справляются ученые?
Технологическое решение таково: камеру с мультиэлектродной матрицей помещают в специальный инкубатор, где поддерживаются температура 35,6 градуса, определенная влажность и концентрация углекислого газа и кислорода. «Через несколько дней между клетками начинают образовываться связи, вырастает живая нейронная сеть, в которой спонтанно генерируются и распространяются электрические импульсы, — рассказывает Алексей Пимашкин. — На появление стабильной сети уходит около 20 дней. При этом из нескольких десятков тысяч нейронов, посаженных изначально, остается около пяти тысяч (остальные погибают), но и этого хватает для эксперимента, суть которого в исследовании процессов обработки информации в мозге». Ученые по отдельности стимулируют электроды, подавая на них электрические сигналы, и таким образом возбуждают нейроны, сигнал от которых распространяется по всей сети. Тем самым полностью симулируется ситуация, при которой живой мозг получает сигналы от органов зрения и осязания, то есть от так называемых сенсорных входов. Когда на нервное окончание, например на сетчатку глаза, у человека или животного поступает некий сигнал, нейроны посылают определенную последовательность импульсов в мозг. Те проходят через нейронные сети и вызывают отклик — именно так мы принимаем то или иное решение, допустим, протягиваем руку, чтобы взять нужный предмет. Эти действия кодируются в мозге после обработки поступающих сигналов. Команду на их выполнение отдают нейроны, посылая последовательности импульсов на соответствующие нервные окончания, которые руководят мышцами. Ученые называют такую цепочку стимул-реакцией. Другими словами, мозг получает какой-то сигнал или стимул извне, обрабатывает его и на выходе выдает уже другой сигнал, реакцию.
Подобную цепочку моделируют и разработчики нейроанимата. Помимо электродов, назначенных на роль сенсорных входов и ответственных за стимуляцию нейронной сети, на мультиэлектродной матрице часть электродов может снимать или считывать электрическую активность нейронов. Их назначили выходами нейронной сети. Это аналоги выходов мозга на какие-то моторные функции, по которым сигнал передается мышцам. Проверить, насколько качественно искусственно выращенная нейронная сеть может выполнять элементарные функции настоящего мозга, исследователи решили, подключив к ней робота.
Машинка с секретом
Сам робот элементарный — машинка из детского конструктора. У нее есть колеса с моторчиками, она может ехать влево или вправо, давать задний ход, есть датчики касания — кнопки справа, слева и спереди. Если все эти свойства описывать с позиций живой системы, можно сказать, что у такого робота есть сенсорные каналы и он обладает моторными функциями. Он может подключаться к компьютеру при помощи кабеля связи через USB-порт или по радиоканалу Bluetooth. Это подключение как раз и связывает его с нейронной сетью — блоком управления. При этом, как замечает Алексей Пимашкин, «совершенно не важно, где находится нейронная сеть: она может быть в соседнем здании или вообще в другой стране, а сигнал при этом передается по Интернету». Компьютер, к которому подключен робот, не играет абсолютно никакой роли в управлении. Он выполняет лишь функцию передачи и кодирования сигнала от нейронной сети к машинке.
Когда все условия эксперимента выполнены, то есть нейронная сеть сформировалась и готова адекватно воспринимать, обрабатывать и выдавать сигналы, когда назначены входные и выходные электроды на мультиэлектродной матрице, а робот подключен к сети, исследователи приступают к основной части — проверке системы. Тогда и устраивают эксперимент с преодолением препятствий. Датчик-кнопка при столкновении с преградой выдает электрический сигнал, который отражается на экране компьютера. Сигнал идет на входные электроды мультиэлектродной матрицы, и в нейронной сети возникает электрическая активность. Активность одного сигнала длится 500 миллисекунд, ее можно наблюдать на компьютере в виде спайков — электрических импульсов. За это время сигнал обрабатывается, и нейронная сеть выдает уже другой сигнал, который отправляется на выходные электроды. В результате робот получает команду повернуть направо или налево в зависимости от того, какой из его датчиков сработал.
Но как нейронная сеть решает, какой конкретно ответ на внешний сигнал ей выдать? Дело в том, что появление входного сигнала сеть рассматривает как возникновение некоей проблемы, которую нужно решать. Сама по себе она совершенно ничего не знает ни о машинке, ни о препятствии, ни о внешнем мире вообще. Все, что у нее есть, — стимуляция, от которой нужно избавиться. И пока сеть не отдаст нужную команду, стимуляция не исчезнет. Сеть отдает команду лишь потому, что ей нужно что-то сделать, чтобы внешний сигнал пропал. Таково свойство нейронов.
В первый раз в своей жизни столкнувшись с препятствием, нейронная сеть не умеет делать ничего. Она не знает, какой сигнал ей выдать в ответ, и начинает генерировать множество различных реакций. В случайный момент времени одна из реакций оказывается верной, робот сворачивает, и постоянное внешнее возмущение пропадает, потому что кнопка-датчик больше не нажата. Становится хорошо всем: ученым от того, что машинка выполнила разумное действие и увернулась от препятствия, а у нейронной сети исчезло раздражение. Однако это действие является лишь началом жизнедеятельности нейронной сети во внешнем мире. В следующий раз время от начала возмущения до того момента, как сеть даст правильный ответ, сократится, и с каждым разом оно будет сокращаться все сильнее. Нейронная сеть станет отдавать команду на поворот робота практически сразу после его столкновения с препятствием. Этот процесс усвоения нужного решения и хотят исследовать ученые во время экспериментов над нейроаниматом.
Подобное обучение живого мозга исследователи сравнивают с тем, как, например, в поисках еды животное обходит различные места в пространстве, а когда находит, должно запомнить это место, чтобы вернуться туда в следующий раз. Изначально у мозга не было решения проблемы, где найти еду. Он не знал, что делать и куда идти. Затем в результате поиска это решение нашлось и запомнилось. При этом схема работы мозга аналогична тому, что происходит в процессе эксперимента с нейроаниматом.
Исследователи хотят добиться, чтобы искусственно выращенная нейронная сеть смогла так же обучаться и самоорганизовываться, как и живой мозг, а потому работают над моделью, в которой робот будет иметь множество сенсорных входов и много различных возможностей для решений. На него планируется поставить ультразвуковой датчик, чтобы он «видел» препятствия подобно летучей мыши. Что случится тогда? Он сможет поворачивать в разные стороны, ездить с различной скоростью, выполнять другие механические действия, например, нагибаться или делать последовательные движения — не просто сворачивать, а поворачивать налево, потом направо, потом еще раз налево, обходить препятствие. «От обычного робота его станет отличать то, что все решения будет принимать не программируемый компьютер с заранее заложенными решениями, а адаптивный навигатор — живой мозг, находящий и запоминающий новые решения», — объясняет Виктор Казанцев.
Однако возникает вопрос — зачем все это нужно?
Исследователи не скрывают — чтобы заглянуть в глубины мозга: изучить при помощи микроскопов и других исследовательских приборов, что, собственно, происходит внутри нейронной сети в процессе обработки информации и обучения. Далее, когда они получат схему работы сети, которая самоорганизовалась и научилась что-то делать, можно будет создать математическую модель, которую, в свою очередь, зашить в микрочип. Он станет самоорганизующейся системой обработки информации, своего рода искусственным интеллектом. Ни больше ни меньше.