MyBooks.club
Все категории

Игорь Дмитриев - Упрямый Галилей

На сайте mybooks.club вы можете бесплатно читать книги онлайн без регистрации, включая Игорь Дмитриев - Упрямый Галилей. Жанр: Прочая документальная литература издательство -,. Доступна полная версия книги с кратким содержанием для предварительного ознакомления, аннотацией (предисловием), рецензиями от других читателей и их экспертным мнением.
Кроме того, на сайте mybooks.club вы найдете множество новинок, которые стоит прочитать.

Название:
Упрямый Галилей
Издательство:
-
ISBN:
-
Год:
-
Дата добавления:
13 декабрь 2018
Количество просмотров:
165
Читать онлайн
Игорь Дмитриев - Упрямый Галилей

Игорь Дмитриев - Упрямый Галилей краткое содержание

Игорь Дмитриев - Упрямый Галилей - описание и краткое содержание, автор Игорь Дмитриев, читайте бесплатно онлайн на сайте электронной библиотеки mybooks.club
В монографии на основании широкого круга первоисточников предлагается новая трактовка одного из самых драматичных эпизодов истории европейской науки начала Нового времени – инквизиционного процесса над Галилео Галилеем 1633 года. Сам процесс и предшествующие ему события рассмотрены сквозь призму разнообразных контекстов эпохи: теологического, политического, социокультурного, личностно-психологического, научного, патронатного, риторического, логического, философского. Выполненное автором исследование показывает, что традиционная трактовка указанного события (дело Галилея как пример травли великого ученого церковными мракобесами и как иллюстрация противостояния передовой науки и церковной догматики) не вполне соответствует действительности, опровергается также и широко распространенное мнение, будто Галилей был предан суду инквизиции за защиту теории Коперника. Процесс над Галилеем – событие сложное, многогранное и противоречивое, о чем и свидетельствует красноречиво книга И. Дмитриева.

Упрямый Галилей читать онлайн бесплатно

Упрямый Галилей - читать книгу онлайн бесплатно, автор Игорь Дмитриев

«…Угол образуется пересечением двух прямых линий в одной точке, например линий ab и cb в точке b [рис. 3.1]. Далее, если вы разделите угол abc, прочертив прямую de, вы тем самым разделите и точку b на две части так, что одна половина [точки] присоединится к ab, а другая – к bc. Но это противоречит определению точки, согласно которому она не имеет частей»1473.

А следовательно, поскольку часть точки есть ничто, угол также есть ничто. Бекман заметил, что первая часть рассуждения Декарта построена на допущении, будто точку можно разделить, тогда как в действительности она не является «реальной величиной»1474. Но как бы то ни было, обсуждение указанного «паралогизма» показало, что молодым людям есть о чем поговорить.

«Физико-математики, – записал Бекман в Journal далее, – встречаются очень редко». А Декарт признался, продолжает голландец, что он «кроме меня не встречал никого, кто бы развивал свои исследования так, как это делаю я, то есть комбинируя физику и математику самым точным образом»1475.

КОМЕДИЯ ОШИБОК

Бекман родился в Миддельбурге, главном городе нидерландской провинции Зеландия. В 1607 – 1610 годах изучал теологию в Лейдене, одновременно зарабатывая себе на жизнь изготовлением свечей и прокладкой водопроводных труб. В 1618 году он окончил университет в Кане (Caen) со степенью доктора медицины, но врачом не стал и зарабатывал на жизнь преподаванием в школах Утрехта, Роттердама и Дордрехта. В Бреду он приехал, чтобы помочь своему дяде в забое свиней, а заодно и подыскать себе невесту.

Как-то, скорее всего в ноябре – декабре 1618 года, более точную дату установить уже невозможно, Бекман задал Декарту вопрос, касавшийся свободного падения тел. Декарт набросал ответ, который Бекман сохранил и спустя десять лет записал в свой дневник (Journal)1476, истолковав картезианское решение так, как он его понял. По словам Александра Койре, Декартовы рассуждения представляли собой смесь «математического изящества с самой безнадежной физической путаницей»1477.

Рис. 3.1. К рассуждениям Декарта о величине угла

Бекмана интересовал следующий вопрос1478: «Можем ли мы, исходя из принятых мною начал, а именно: в вакууме тело, некогда приведенное в движение, будет всегда пребывать в движении; между Землей и падающим камнем находится вакуум, – определить, какое расстояние прошло [падающее] тело за час, если известно, какой путь оно прошло за два часа?»1479

Декарт начинает свой ответ с утверждения, что «сила движения (force de se mouvoir)» падающего тела возрастает пропорционально длине поперечных линий de, fg, hi и т.д. [рис. 3.2]1480. На этой диаграмме в соответствии с позднесредневековой традицией по вертикали (или, как тогда говорили, «по широте») «откладывается» время, то есть экстенсионал движения от точки a к точке b (то есть от начальной к конечной точке пути)1481, а по горизонтали («по долготе») – интенсионал, или степень движения (Декарт использовал выражение «сила движения»1482, что в нашем понимании примерно соответствует скорости или кинетической энергии движения; скажем, к моменту h скорость падающего тела достигла величины hi). Тогда площадь прямоугольника fhio будет представлять то движение, которое тело приобрело за интервал времени fh.

Рис. 3.2. К картезианскому определению возрастания «силы движения» под действием притяжения Земли (1618)

Итак, Декарт определяет величину возрастания «силы движения» под действием «притяжения Земли» в предположении, что это возрастание происходит дискретно:

я принимаю в качестве первого минимума… движения1483, обусловленного первой, которую можно представить, силой притяжения Земли, квадрат aled (то есть величина возрастания интенсивности движения падающего тела за первый промежуток времени может быть геометрически представлена квадратом aled. – И.Д.). Для второго минимума движения получаем удвоенный [квадрат], то есть dmgf; способность (force) движения, которая имелась в первом минимуме, сохраняется и к ней добавляется новая, равная ей способность (то есть за следующий промежуток времени интенсивность движения возрастает на ту же величину. – И.Д.). В третий минимум движения будет [действовать] утроенная способность… и т.д..

Таким образом, свободное падение геометрически может быть представлено треугольником abc.

Если перевести рассуждения Декарта на современный язык (хотя такими «переводами» следует пользоваться с большой осторожностью), то можно сказать, что за равные промежутки времени ∆t1, ∆t2, ∆t3 и т.д. скорость падения возрастает на одну и ту же величину, то есть движение является равноускоренным: v = at.

Но, – продолжает Декарт, – вы мне скажете, что есть части ale, emg, goi и т.д., которые выступают за этот треугольник (то есть за линию ac. – И.Д.), и потому треугольник не может объяснить эту прогрессию (то есть равномерное возрастание интенсивности движения (скорости, в современной терминологии). – И.Д.). Однако я отвечу, что эти выступающие части образуются оттого, что мы приписали широту минимуму, который должен представляться неделимым и не состоящим из частей (то есть вертикаль ab, которая отображает время падения, представлена состоящей из одинаковых дискретных частей – ad, df и т.д., тогда как в действительности время течет непрерывно, а не скачками. – И.Д.).

Далее Декарт делит «минимум» ad и сторону al пополам, получая четыре меньших квадрата (arqs и др.), тогда первым «минимумом движения» станет arqs, а вторым – qtde (который вдвое больше «первого минимума» arqs), при этом сторона qt будет представлять «удвоенный минимум способности» движения. После этого выступающими частями станут меньшие треугольники ars, ste. Затем Декарт аналогичным образом поступает с квадратом arqs, получая еще меньший квадрат aβαγ и т.д. После этого такие же операции деления проделываются со сторонами df, fh и т.д. В результате подобного деления отрезков выступающие треугольники становятся все меньше и меньше, и в итоге мы придем, как выразился Декарт, к «истинному минимуму, то есть к точке, и тогда уже не будет никаких выступающих частей». Таким образом, если перейти к непрерывно текущему времени (и, соответственно, к непрерывно возрастающей «силе движения»), то количество движения будет представлено треугольником abc.

Прежде всего следует отметить, что Декарт вовсе не доказывает, что свободное падение представляет собой равноускоренное движение, но лишь иллюстрирует это обстоятельство графически.

Кроме того, Декарт подчеркивает, что Бог в каждый момент времени создает силу притяжения, действующую на падающее тело, и постулат Бекмана о сохранении движения в вакууме он интерпретирует следующим образом: после того как Бог в первый момент падения камня создал в нем некую силу притяжения, дальнейшее движение камня в пустоте поддерживается той же силой, точнее, в каждый последующий момент Бог создает в камне ту же силу, какую Он создал в начальный момент.

Формулируя выводы из приведенного рассмотрения, Декарт утверждает, используя в качестве иллюстрации геометрическое постороение, приведенное на [рис. 3.3] (где ag = gb и af = fc), что площадь треугольника agf относится к площади трапеции gfbc (а следовательно, и соответствующие количества движения) как 1: 3 (что нетрудно доказать), откуда следует, что «часть gb, которая есть половина [ab], будет проходиться камнем в три раза быстрее, чем другая половина ag».

Рис. 3.3. К картезианскому анализу свободного падения (1618)

Но ведь до этого Декарт под экстенсионалом движения имел в виду не путь, но время! Почему же он, формулируя вывод, меняет смысл экстенсионала? Основанием для замены временного экстенсионала пространственным стало одно из принятых (еще Аристотелем) толкований скорости: быстрее, то есть с большей скоростью, движется то тело, которое за одно и то же время пройдет больший путь, или в формульной записи: при Δt1=Δt2 V1/V2 = S1/S2. Таким образом, можно допустить, что Декарт совершенно правильно полагал, что если за первый час тело прошло расстояние S, то за второй час оно пройдет путь 3S, или, иными словами, если за час тело проходит расстояние S, то за два часа – 4S, то есть S ~ t2. Именно так вывод Декарта понял Бекман. Однако цитированные выше слова из заключительного абзаца декартовского анализа можно (если исходить из буквального понимания текста) толковать иначе: вторую половину пути падающее тело проходит с втрое большей скоростью, чем первую, что, разумеется, неверно.


Игорь Дмитриев читать все книги автора по порядку

Игорь Дмитриев - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mybooks.club.


Упрямый Галилей отзывы

Отзывы читателей о книге Упрямый Галилей, автор: Игорь Дмитриев. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.