MyBooks.club
Все категории

Александр Бабакин - Битва в ионосфере

На сайте mybooks.club вы можете бесплатно читать книги онлайн без регистрации, включая Александр Бабакин - Битва в ионосфере. Жанр: История издательство -,. Доступна полная версия книги с кратким содержанием для предварительного ознакомления, аннотацией (предисловием), рецензиями от других читателей и их экспертным мнением.
Кроме того, на сайте mybooks.club вы найдете множество новинок, которые стоит прочитать.

Название:
Битва в ионосфере
Издательство:
-
ISBN:
-
Год:
-
Дата добавления:
28 январь 2019
Количество просмотров:
121
Читать онлайн
Александр Бабакин - Битва в ионосфере

Александр Бабакин - Битва в ионосфере краткое содержание

Александр Бабакин - Битва в ионосфере - описание и краткое содержание, автор Александр Бабакин, читайте бесплатно онлайн на сайте электронной библиотеки mybooks.club

Битва в ионосфере читать онлайн бесплатно

Битва в ионосфере - читать книгу онлайн бесплатно, автор Александр Бабакин

«Радиофизические парадоксы загоризонтной локации»

В. Акимов, Ю. Калинин, В. Стрелкин, Э. Шустов «В загоризонтной локации на больших дальностях, соизмеримых с радиусом Земли, плазменных следов стартующих баллистических ракет происходит структурно простая последовательность радиофизических эффектов. Ее несколько условно можно разбить на относительно независимые этапы: излучение первичной волны, распространение радиоволн вдоль по трассе, рассеяние радиоволн на предполагаемой цели и на других неоднородностях трассы (пассивные помехи), распространение радиоволн в обратном направлении, регистрация сигнала на фоне сигналов от других радиотехнических средств коротковолнового диапазона (активные помехи). Эта радиофизическая картина была подтверждена многолетними исследованиями, как отдельных этапов процесса, так и реализацией процесса в целом. При этом для каждого из перечисленных этапов были построены частные радиофизические модели и проведены частные эксперименты.

При конструировании загоризонтных локаторов, предназначенных для работы на сверхдальних трассах, предполагается использовать эффект Доплера для того, чтобы осуществить селекцию движущейся цели (избавиться от мощных пассивных помех), подобно тому, как это делается в традиционной надгоризонтной локации. На ранних этапах развития загоризонтной локации проводились специализированные модельные газодинамические исследования структуры высотного следа баллистической ракеты. Исследования подтвердили опубликованные в мировой научной литературе результаты, состоящие в том, что след состоит из ряда фрагментов (головная ударная волна, участок расширения, зона турбулентного перемешивания). Из них часть имеет более высокую плотность заряженных частиц, чем окружающие среда-ионосфера, а часть — более низкую.

Более сложной оказалась задача расчета характеристик взаимодействия радиоволн с различными фрагментами следа. Фактически эта задача так и не была решена с достаточной для загоризонтной локации полнотой. Это обусловило проведение масштабных экспериментов по локации следа баллистической ракеты, как в зоне прямой видимости, так и на дальности одного скачка. По техническим причинам данные эксперименты осуществлялись при таком взаимном расположении средств локации и следа ракеты, которое соответствует облучению движущейся ракеты сзади. При этом радиоволновые пакеты прежде, чем достичь областей следа примыкающих к корпусу самой ракеты и, следовательно, движущихся со скоростью самой ракеты, проходили через более далекие области, покоящиеся относительно ионосферы или движущиеся в направлении противоположном движению корпуса ракеты. Тем не менее, спектральный анализ отраженных сигналов свидетельствует о том, что в спектре отраженного сзади сигнала существенная часть принадлежала компонентам, чей сдвиг по частоте соответствовал скорости движения самой ракеты. Ожидалось, что при переходе ко второму этапу экспериментов, в которых след ракеты с больших дальностей лоцировался бы спереди. Такое наличие в спектре отраженного сигнала компонент сдвинутых по частоте на величину, определяемую скоростью движения корпуса ракеты навстречу фронту первичной волны, сохранится. Однако этого не произошло. Парадокс ситуации состоял в том, что скорости, определяемые двумя разными методами — по доплеровскому смещению несущей радиолокационного сигнала и по изменению задержек сигнала — оказались неравны. Для ситуаций, в которых фаза сигнала имеет единственное значение при любых значениях частоты и времени, два упомянутых метода определения скорости цели соответствуют двум различным вторым смешанным производным фазы, как функции частоты и времени. Неравенство друг другу смешанных производных представляет собой формально-математическое выражение парадокса неравенства скорости цели определяемой по несущей и по огибающей радиолокационного сигнала.

Почему при локации из задней полусферы летящей ракеты рассеянная волна приобретает сдвиг частоты, соответствующей скорости движения самой ракеты, а при локации с передней полусферы сдвиг частоты существенно меньше? Ответ на этот вопрос можно было бы найти, предположив наличие разной роли поверхностного и объемного рассеяния радиоволн при различных ракурсах облучения следа. Однако эти гипотезы не смогут объяснить отсутствия подобного различия в скорости изменения задержки импульсов.

В заключение следует отметить, что целый ряд радиофизических парадоксов связан с нелинейными эффектами скачковых и скользящих волновых пакетов. Сигналы кругосветного эха также обладают рядом свойств, которые с трудом поддаются интерпретации. Можно смело утверждать, что отмеченные парадоксы являются, и будут являться мощным стимулом к исследованию свойств радиосигналов на протяженных радиолокационных трассах, включая ситуацию наличия искусственных ионосферных неоднородностей».

«Опытно-теоретический метод оценки характеристик сложных систем вооружения и его применение при решении задач загоризонтного обнаружения»

А. Шаракшанэ доктор технических наук, профессор, лауреат Государственной премии, генерал-майор в отставке. С. Козлов, доктор физико-математических наук, старший научный сотрудник, подполковник запаса. «Во второй половине 50-х годов на вооружение страны стали предлагаться некоторые системы, которые в дальнейшем получили название сложных. Наиболее типичными из них являются системы противоракетной обороны (ПРО) и предупреждения о ракетном нападении (СПРН). Главными отличительными чертами таких систем от других были невозможность их натурных испытаний в полном объеме на соответствие требованиям тактико-технического задания (ТТЗ), большая сложность в построении подобных систем и практически автоматизированное принятие решений (технических, политических). Все это потребовало разработки принципиально новых подходов к испытаниям таких систем и оценке их тактико-технических характеристик (ТТХ).

Первые идеи в данном направлении были высказаны и разработаны в управлении анализа одного из казахстанских полигонов Минобороны СССР, которое возглавлял в те годы полковник А. Шаракшанэ. Основное внимание уделялось решению двух вопросов: оценке характеристик сложных автоматизированных систем вооружения и проверке правильности работы программно-алгоритмического комплекса. Исследования проводились в интересах систем ПРО («Алдан», А-35) в период 1957–1961 гг. Большую роль в данной работе сыграли Г. Кононенко, И. Железнов, Ф. Евстратов, В. Васенев. В дальнейшем новый подход к испытаниям сложных систем авторы назвали опытно-теоретическим.

В 1961 году создается Специальный НИИ МО. Его основными задачами были разработка методологии испытаний и прием на вооружение систем ПРО и СПРН. Развитие и совершенствование опытно-теоретического метода связано именно с этим институтом, которым руководил генерал-лейтенант, доктор технических наук, профессор И. Пенчуков. В ЦНИИ были окончательно разработаны и обоснованы принципы отработки математических моделей.

Со временем в ЦНИИ начало развиваться новое направление опытно-теоретического метода, связанное с созданием комплексных испытательных моделирующих стендов (КИМС) для разных средств и элементов систем ПРО и СПРН. В отличие от испытаний, основанных на использовании главным образом математических моделей, КИМСы должны были применяться только на самих боевых узлах с полным использованием аппаратуры и комплекса программно-реализованных алгоритмов узла. Главная задача, решаемая с помощью КИМСов — имитация целевой обстановки и сигналов от целей, что позволяло в конечном счете вести испытания в реальном масштабе времени с максимальным привлечением технических средств объектов.

Новая проблема, возникшая в ЦНИИ в начале 70-х годов, была связана с загоризонтной радиолокацией (ЗГРЛС) стартов баллистических ракет с территории США (в рамках создания СПРН). Загоризонтная радиолокация, предназначенная для обнаружения запусков БР, когда они выходят на высоты более 100 км, безусловно, должна была сыграть положительную роль в рамках общей системы ПРН. Работа системы ЗГ РЛС предусматривалась в коротковолновом диапазоне радиоволн. Причем сама система «подстраивалась» под непрерывно изменяющиеся условия распространения радиоволн. Основные особенности использования опытно-теоретического метода относительно ЗГРЛС заключались в необходимости решения следующих задач:

— определения объема и условий исходных данных для последующей калибровки математических моделей с учетом значительной зависимости ТТХ от геофизических условий;

— обоснование принципов переноса экспериментальных оценок, полученных для РЛС в г. Николаеве, на боевые трассы;


Александр Бабакин читать все книги автора по порядку

Александр Бабакин - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mybooks.club.


Битва в ионосфере отзывы

Отзывы читателей о книге Битва в ионосфере, автор: Александр Бабакин. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.