Обратившись за помощью к двум коллегам из университета Мичигана, Гамильтон построил компьютерную модель полового размножения и инфекционных заболеваний, маленький мир искусственной жизни. Все начиналось с воображаемой популяции в две сотни особей. Они были похожи на людей — каждая начинала размножаться в 14 лет, продолжала примерно до 35 и рожала одного потомка каждый год. Но компьютер устроил так, что часть из них размножалась половым путем (т. е. каждого ребенка должны были произвести и вырастить два родителя), а часть была беспола. Смерти же происходили случайно. Как и ожидалось, каждый раз, когда запускался компьютер, половая форма быстро исчезала. В игре между половым и бесполым размножением последнее, при прочих равных, всегда побеждает{98}.
Затем исследователи ввели в модель несколько видов паразитов — по 200 особей каждого вида. При этом мощь их воздействия зависела от «генов вирулентности»[33], которым соответствовали «гены устойчивости» у хозяина. В каждом поколении самые неустойчивые хозяева и самые незаразные паразиты гибли. Теперь бесполая форма потеряла свое преимущество, и в игре обычно стало побеждать половое размножение. Особенно часто это происходило, если генов устойчивости и заразности у соответствующих персонажей оказывалось много[34].
В циклах программы, как и ожидалось, сначала распространяются самые лучшие противопаразитные гены. Но потом за ними подтягиваются гены вирулентности, которые могут взломать их защиту. В результате, противопаразитные снова становятся редкостью, после чего — за ненадобностью — становятся редкими и соответствующие гены вирулентности и т. д. Как сказал Гамильтон, «противопаразитные адаптации постоянно устаревают». Но исчезающая адаптация в один прекрасный момент перестает редеть и может снова распространиться. «Главный смысл полового размножения, по нашей теории, в том, что оно сохраняет гены, которые, возможно, сейчас и неудачны, но потом их можно будет использовать вновь, — писал Гамильтон. — Оно постоянно проверяет гены в комбинациях, ожидая, когда они перестанут быть неудачным». Нет никакого идеального гена устойчивости к заболеваниям — только зыбучие пески временного устаревания{99} [35].
Когда Гамильтон запускает симуляцию, на экране компьютера возникает прозрачный куб, внутри которого видны две линии — зеленая и синяя, — бегущие друг за другом, как следы от фейерверка на фотографии, сделанной с большой выдержкой. Паразит гоняется за хозяином в генетическом «пространстве». Или, говоря научнее, каждая грань куба представляет собой частоту определенной версии гена, а хозяин и паразит перемещаются внутри, согласно изменениям частот генных версий. В половине случаев хозяин в итоге застревает в каком-нибудь углу куба, потеряв все разнообразие своих генов. Мутации, создавая новое разнообразие, эффективно предотвращают такую ситуацию. Но чтобы не застрять в углу, даже не нужно никаких мутаций. Несмотря на то, что стартовые условия симуляции жестко детерминистские, и в модель не вносится никакого элемента случайности, порой происходят совершенно неожиданные вещи. Например, две линии начинают преследовать друг друга на краю куба по абсолютно устойчивой траектории, приблизительно за 50 поколений меняя один ген на другой, потом другой на третий и т. д., и в итоге возвращаясь в начальную точку. Иногда возникают странные волны и циклы. А иногда — полный хаос, в котором две линии просто заполняют куб цветным спагетти. В этом есть что-то удивительно живое{100}.
Конечно, эта модель едва ли похожа на реальный мир: она может доказать что-то не больше, чем плавающая уменьшенная копия линкора гарантирует плавучесть настоящего корабля. Но она помогает определить условия, при которых Черная Королева будет бежать вечно в ситуации, когда очень упрощенная версия человека и чудовищно упрощенная версия паразита будут менять свои гены циклически или случайным образом. Вот эти условия: они оба должны размножаться половым путем{101}.
Половое размножение на высоте
Многое из того, что предсказывает теория инфекционных заболеваний Гамильтона, совпадает с положениями мутационной теории Алексея Кондрашова, с которой мы столкнулись в предыдущей главе (согласно ней, половое размножение необходимо для очистки популяции от вредных мутаций). Как и в истории с поливальной машиной и дождем, обе теории объясняют, как «намокла дорожка». Но которая из них верна? Полученные в последние годы материалы по экологии делают более достоверным вариант Гамильтона. Существуют географические области, в которых мутации происходят часто, а инфекционные заболевания — редко. Например, на вершинах гор гораздо больше ультрафиолетового света того типа, который повреждает гены и вызывает мутации. Если прав Кондрашов, то половое размножение на горных вершинах должно быть интенсивнее. Но на самом деле это не так. Альпийские цветковые растения размножаются половым путем реже других покрытосеменных. У некоторых же из последних высокогорные формы бесполы, а низинные применяют половое размножение. Среди пяти видов Townsendia (альпийской ромашки) бесполые формы обнаруживаются на большей высоте, чем половые. У Townsendia condensata, которая живет очень высоко, до сих пор найдена лишь одна популяция с половым размножением, и она — наиболее низко расположенная{102}. конечно, все это можно объяснить иначе, не приплетая никаких паразитов: чем выше вы забираетесь, тем холоднее становится и тем меньше можно полагаться на насекомых в вопросах опыления. Но если бы Кондрашов был прав, то все эти факторы были бы ничтожны, по сравнению с необходимостью бороться с грузом мутаций. Кроме того, высотное разнообразие местообитаний дублируется широтным. Вот что пишут учебники о связи типа размножения с широтной изменчивостью: «Есть клещи и вши, жуки и мухи, мотыльки, кузнечики, многоножки и многие другие группы организмов, в популяциях которых самцы исчезают по мере того, как исследователь двигается от полюса к тропикам»{103}.
Другая тенденция, которую объясняет теория паразитов, состоит в том, что большинство бесполых растений — короткоживущие однолетние формы. Долгоживущие деревья сталкиваются с большой проблемой: у их паразитов есть время для адаптации к их генетической защите, эволюционировать. К примеру, старые ели Дугласа заражены кокцидами (которые выглядят как аморфные капли, даже не очень похожие на животных) сильнее, чем молодые. Пересаживая этого паразита с одного дерева на другое, ученые смогли показать: за этим стоит улучшение адаптации нападающих, а не ослабление защиты старых деревьев. Таким образом, последние не сделали бы ничего хорошего для своего потомства, если бы производили его идентичным себе — хорошо адаптированные к прежней защите паразиты немедленно поселились бы и на молодых побегах. Вместо этого деревья размножаются половым путем и дают отличное от себя потомство{104}.
Возможно, инфекция даже кладет предел длительности жизни организма: не имеет смысла пытаться пережить тот момент, когда паразиты адаптируются к вашей защите. Мы так и не знаем, каким образом тисы, остистые сосны и гигантские секвойи умудряются жить тысячи лет, но зато нам известно, что из-за наличия в их коре и древесине специальных веществ, они удивительно устойчивы к разложению и паразитам. В калифорнийской Сьерра-Неваде лежат стволы упавших секвой, частично заросшие столетними корнями гигантских сосен — и их древесина остается твердой и гладкой{105}.
Есть большое искушение предположить, что удивительно синхронизированное цветение бамбука может быть связано с половым размножением и инфекцией. Некоторые виды бамбука цветут всего один раз в 121 год, делают это одновременно во всем мире, а затем умирают. Это дает их потомкам целый ряд преимуществ: у них нет живых родителей, с которыми им пришлось бы конкурировать, а все паразиты гибнут вместе с родительскими растениями. Кстати, у тех, кто питается последними, тоже возникают проблемы: цветение бамбука становится бедой для панд{106}.
Любопытно, что самим паразитам часто тоже приходится размножаться половым путем — несмотря на страшные неудобства, которые им это доставляет. Билярзия, живущая внутри человеческой вены, не может просто так отправиться на поиски партнера. Приходится ждать попадания в организм хозяина другого, генетически отличающегося червя, с которым можно будет произвести потомство половым путем. Чтобы угнаться за своими размножающимися половым путем хозяевами, паразитам тоже нужно половое размножение.
Но все это — скорее абстрактные рассуждения, чем результаты точных научных экспериментов. Есть более очевидные свидетельства в пользу «паразитной теории» возникновения полового размножения. Самое тщательное ее исследование было проведено в Новой Зеландии тихим американским биологом по имени Кертис Лайвли, который впервые занялся эволюцией полового размножения, когда писал студенческую курсовую работу. Вскоре он оставил другие исследования и сосредоточился именно на этом вопросе, для чего поехал в Новую Зеландию, где стал изучать улиток ручьев и озер. Там-то он и обнаружил, что в одних популяциях нет самцов и размножение происходит бесполо, а в других самки спариваются с самцами и две половые формы устойчиво воспроизводятся. Исследователь оценивал распространенность полового размножения, подсчитывая долю самцов в выборках. Если верна теория «викария из Брэя» и улиткам половое размножение необходимо для адаптации к изменениям окружающей среды, то в ручьях — более изменчивых местообитаниях — самцов должно было быть больше, чем в озерах. Если верна «теория заросшего берега», и половое размножение происходит из-за внутривидовой конкуренции, то все должно быть наоборот, ибо озера — это стабильные, перенаселенные местообитания. А если верна паразитная теория, самцов больше там, где больше паразитов{107}.