Для целей диагностики ученые используют любые зацепки, которые им предоставляет геном. В частности, уже многократно упоминавшийся полиморфизм ДНК, который связан с изменениями не самих генов, а прилежащих к генам участков, вовлеченных тем или иным образом в патологический процесс. Например, установлено, что всего лишь точечная замена (Т–Ц) в области, расположенной за геном CYP1A1, в 2,5 раза повышает риск развития плоскоклеточного рака.
Еще одно интересное применение генной диагностики связано с исследованиями по выявлению генетической предрасположенности человека к выполнению мышечной деятельности различного характера и длительности. Это имеет большое значение для людей, занятых тяжелым физическим трудом, спортсменов. Основным генетическим маркером здесь оказался ген ангиотензин-конвертирующего фермента (ACP), который служит в качестве ключевого фермента системы, регулирующей артериальное давление. Под действием ACP происходит образование активного сосудосуживающего вещества, которое кроме того выполняет функцию фактора роста, усиливающего процессы синтеза структурных белков в клетках миокарда, что приводит к гипертрофии сердечной мышцы. Изучение гена ACP показало наличие в нем полиморфизма, который заключается в присутствии или отсутствии фрагмента длиной 287 п. н. в 16-м интроне. При этом физическая активность человека находится в прямой зависимости от присутствующего в его геноме варианта гена ACP.
Ограничимся этими примерами, поскольку нашей задачей не является описание всех существующих видов геномной диагностики. А их число в настоящее время огромно. Отметим лишь, что подобного рода диагностические анализы медики осуществляют на основе ДНК, используя ряд современных подходов, разработанных первоначально как раз для научного анализа ДНК, а совсем не в практических целях. Теперь же эти подходы стали важным инструментом практической медицины. В первую очередь это уже упоминавшаяся полимеразная цепная реакция (ПЦР). В последние годы для определения вариаций или полиморфизмов ДНК человека стали использовать и микрочипы. С их помощью возможно оценить одновременно тысячи потенциально опасных мутаций и полиморфизмов генома у конкретного пациента. С помощью биочипов можно выявлять генетические ошибки почти так же быстро, как сканер определяет цены на упаковках продуктов в магазине.
В самом ближайшем будущем генная диагностика позволит определять весь спектр генов предрасположенности к заболеваниям у каждого человека. Создание «генетического паспорта» гражданина становится реальностью. Такой «паспорт» должен содержать информацию о наличии мутаций в генах, вызывающих развитие наследственных болезней, и, что особенно важно, вариантов генов предрасположенности к мультифакториальным заболеваниям. Уже сегодня в Западной Европе, США и Канаде в неполном варианте проводится «генетическая паспортизация» по различным медицинским показаниям и просто по индивидуальному желанию. Формируются индивидуальные и семейные базы генетических данных. Таким образом, стихийный процесс «паспортизации» уже начался. Хотя этот вопрос не так прост, как кажется на первый взгляд (подробнее смотрите об этом в главе «Этические проблемы»), очевидно, что «генетическая паспортизация» станет основой профилактической индивидуализированной медицины будущего. Ведь гораздо проще вовремя помочь себе — соблюдать определенную диету, не злоупотреблять солнечными ваннами, не курить, чем заболеть тяжелым заболеванием, не поддающимся никакому лечению.
ДНКовый ТЕКСТ ВМЕСТО ОТПЕЧАТКОВ ПАЛЬЦЕВ (генная дактилоскопия)
Каждый человек отличается от другого и с каждым днем отличается сам от себя.
А. ПопМногие годы для идентификации личности использовали лишь один эффективный подход — анализ отпечатков пальцев (по-научному — дактилоскопия). В переводе с греческого daktylos — палец + skopeo — смотрю. Считается, что впервые этот термин использовал в 1877 году никому не известный английский служащий Вильям Гершель. Он обнаружил, что папиллярные узоры на руках людей отличаются между собой по особенностям строения и не меняются на протяжении всей жизни. То есть каждый человек как бы промаркирован сторого определенным ярлыком. Первая система классификации отпечатков была создана Фрэнсисом Гальтоном, британским антропологом и кузеном Чарлза Дарвина. В 1892 году аргентинский полисмен Ян Вучетич впервые использовал на практике эту систему и на основе оставленного убийцей на месте преступления окровавленного отпечатка идентифицировал его. В начале XX века в ряде стран был начат систематический сбор отпечатков пальцев для криминалистической идентификации. Стандартом для признания отпечатков идентичными было совпадение 12 деталей узоров на пальцах. В дальнейшем это открытие с успехом использовалось и продолжает использоваться в криминалистике на протяжении уже свыше 100 лет.
Однако не всегда в распоряжении криминалистов имеются интересующие их отпечатки пальцев. Кроме того, некоторые проблемы вообще не могут быть решены с помощью этого подхода. Например, вопрос об отцовстве и материнстве. Странно было бы для решения этого вопроса искать на ребенке отпечатки пальцев родителей, что бы установить степень родства. И вот наступило время, когда для решения этой проблемы на помощь криминалистам пришел геном человека, а вернее, его ДНК. Сейчас широко стали использоваться на практике геномные методы идентификации личности, созданные на базе достижений молекулярной генетики человека.
А начало всему этому было положено англичанином А. Джеффрисом, разработавшим «дактилоскопирование» на основе молекулярного анализа ДНК (сейчас это называют ДНК-фингерпринтированием — от англ. слова finger — палец). Метод геномной дактилоскопии или ДНК-фингерпринтирования дал криминалистам абсолютно надежный тест на идентификацию личности. «Генные отпечатки» позволяют идентифицировать того или иного человека по небольшому количеству практически любого биологического материала (капли крови, одного волоса, слюны, кусочка ногтя, следов пота, спермы). Сообщалось, что разработаны методы, позволяющие проводить идентификацию личности по одной лишь клетке. Так, шотландцу Финдли с коллегами удалось идентифицировать человека по всего одной клетке кожи, оставленной на документе, который был написан 30 лет назад.
Уже тысячи людей осуждены или оправданы только на основании геномного анализа. Ярким примером этому может служить событие, о котором сообщило агентство Associated Press в конце 2002 года. В США был досрочно освобожден человек, отсидевший 15 лет в тюрьме по обвинению в изнасиловании 8-летней девочки. Его осудили на 40 лет. Но теперь, благодаря использованию метода ДНК–фингерпринтирования (напомним, что сам метод появился спустя много лет после суда), была постфактум доказана полная невиновность этого человека в преступлении.
Важен этот тест и для идентификации родственных связей людей (тут и проблемы отцовства и материнства, и проблемы наследования прав и имущества, и многие другие). В старину, чтобы узнать истину в последней инстанции, люди обращались к Дельфийскому оракулу. Теперь они стали «вопрошать» ДНК.
Суть метода геномной дактилоскопии заключается в следующем. За основу молекулярные генетики взяли не гены, а повторяющиеся участки генома человека. Были созданы специальные тест-системы, которые назвали зондами. Зонды — это короткие нуклеотидные последовательности ДНК, позволяющие определять устройство и распределение в геноме тех или иных повторяющихся элементов генома человека. Число отдельных повторов в определенных местах (чаще всего это микросателлиты) для каждого человека строго индивидуально. Например, если в определенном месте нашей молекулы ДНК последовательность ТЦА повторена три раза подряд: ТЦАТЦАТЦА, то вероятность встретить на Земле второго человека, у которого в том же месте ДНК те же три буквы повторяются тоже три раза, практически исключена. После подсчета числа повторов в определенном районе ДНК можно без сомнения утверждать, что он принадлежит или не принадлежит конкретному человеку. Процедура установления личности (типирования) состоит в следующем. Первоначально выделяют ДНК из любого биологического материала (кровь, сперма, кусочек кожи, волосяная луковица). Затем ДНК «нарезают» рестриктазами на фрагменты и с помощью электрического поля выстраивают эти фрагменты в ряд строго по размеру. Далее проводят гибридизацию с радиоактивным зондом и расположение связывающихся с зондом (гибридизующихся) фрагментов определяют методом радиоавтографии, т. е. на рентгеновской пленке. При засвечивании рентгеновской пленки выявляются располагающиеся друг под другом черные полоски, так что радиоавтограф ДНК внешне чем-то напоминает штриховые коды на упаковках товаров в магазинах (рис. 34).