Оказалось, что у эмбрионов с мутантным геном skn-1 в клетках, которые должны стать кишечником, med-1/2 не включается вовсе, а end-3 работает очень слабо. Что касается гена end-1, то его активность становится непредсказуемой. В норме этот ген на определенной стадии развития эмбриона начинает работать в клетках, которые должны стать кишечником, причем уровень его активности во всех этих клетках примерно одинаков. У мутантных эмбрионов end-1 начинает работать в разных клетках с разной силой, а в некоторых не включается вовсе, так что общая картина получается хаотичной.
«Родословная» клеток кишечника в развитии эмбриона C. elegans. Кишечник взрослого червя состоит из 20 клеток. Все они являются потомками бластомера E, который происходит от бластомера EMS, а тот — от P1. Бластомер P1 образуется в результате первого деления оплодотворенной яйцеклетки (P0). «Братом» бластомера EMS является бластомер P2 — организатор, формирующий передне-заднюю полярность зародыша при помощи морфогена Wnt. Из Raj et al., 2010.
Этот хаос на следующем этапе регуляторного каскада приводит к одному из двух альтернативных результатов: либо ген elt-2 включается, и тогда клетки превращаются в кишечник, либо elt-2 остается выключенным, и тогда кишечник не формируется. Как выяснилось, выбор одного из двух исходов зависит от того, достигнет ли активность end-1 определенного порогового уровня. Однако и тут сохраняется доля неопределенности. Если активность end-1 ниже пороговой, elt-2 точно не включится и кишечника не будет. Если же активность end-1 выше пороговой, то это еще не гарантирует включения elt-2: он либо включится, либо нет. Раз включившись, elt-2 уже будет работать нормально сколько ему положено, потому что этот ген активирует сам себя.
Хаос, возникающий в работе гена end-1, объясняется отсутствием должной регуляции со стороны end-3. Если вывести из строя end-3, то результаты получаются примерно такие же, как и при мутациях skn-1, т. е. ген end-1 начинает работать хаотично, а ген elt-2 либо включается, либо нет. Если же вывести из строя end-1, то при нормально работающих skn-1 и end-3 никакой неполной пенетрантности не возникает и кишечник формируется у всех эмбрионов.
Регуляторный каскад, приводящий к включению гена elt-2 в клетках будущего кишечника. Ген skn-1 (точнее, белковый продукт этого гена) активирует гены med-1/2, end-3 и end-1. Два последних гена активируют ген elt-2, который включает сразу сотни генов, необходимых для превращения бластомеров в клетки кишечника. Несмотря на крайнюю простоту этого регуляторного каскада (по сравнению с тем, что наблюдается у других животных), в нем много «избыточности»: активация одного и того же гена осуществляется не одним, а несколькими параллельными путями. Из Raj et al., 2010.
Таким образом, в норме elt-2 включается благодаря согласованному действию двух регуляторов: end-3 и end-1, причем эти регуляторы отчасти взаимозаменимы. Если выйдет из строя end-1, то нормально работающий end-3 справится с задачей самостоятельно и включит elt-2 в положенное время. Если же забарахлит end-3, то работа end-1 дестабилизируется, но все же он сумеет включить elt-2 хотя бы у некоторых эмбрионов.
Подобные факты указывают на то, что кажущаяся «избыточность», характерная для большинства генно-регуляторных каскадов, управляющих развитием эмбриона, обеспечивает стабильность (помехоустойчивость) развития. Благодаря этой избыточности выход из строя отдельных регуляторов (в результате мутаций или неблагоприятных условий среды) может быть скомпенсирован оставшимися элементами регуляторного каскада по крайней мере у некоторых зародышей. «Случайный шум», который может при этом возникнуть в работе каскада, позволяет одним зародышам развиваться нормально, в то время как другие зародыши с точно таким же геномом могут приобрести какие-то новые фенотипические признаки. Скорее всего, это будут несовместимые с жизнью уродства, но вероятность появления полезных отклонений тоже ненулевая. В таком случае естественный отбор в дальнейшем будет закреплять у потомков этих «перспективных уродов» такие мутации, которые сделают новый путь развития более стабильным. В итоге этот новый путь окажется вписан в геном и станет вполне наследственным.
—————
Зачем нужны «ненужные» гены
Похоже, это общее правило: когда мы сталкиваемся с кажущейся избыточностью живых систем (а природа прямо-таки переполнена примерами «избыточности»), при ближайшем рассмотрении выясняется, что мы имеем дело с адаптациями, развившимися под действием отбора для повышения помехоустойчивости.
Например, именно к такому выводу пришли биологи, изучавшие «лишние» гены у дрожжей.
Чтобы узнать, зачем нужен тот или иной ген, проще всего испортить его мутацией или вовсе отключить и посмотреть, как это отразится на фенотипе. Можно двигаться и в обратном направлении: обнаружив измененный (мутантный) фенотип, пытаться выяснить, изменения какого гена (или генов) привели к таким последствиям. Раньше генетики почти всегда шли вторым путем, а в последнее время в связи с развитием генной инженерии и других современных методик все чаще используется первый путь.
При этом на удивление часто обнаруживается, что тот или иной ген (или некодирующий участок ДНК) как будто ни для чего и не нужен: его удаление не приводит ни к каким видимым последствиям и не снижает жизнеспособность организма.
Например, недавно выяснилось, что отключение гена SREB2, активно работающего в клетках мозга, не только не вредит здоровью мышей, но даже приводит к небольшому увеличению размера мозга и улучшает память (Matsumoto et al., 2008). Между тем этот ген является ультраконсервативным: белок, им кодируемый, у всех млекопитающих абсолютно одинаковый — за всю историю класса млекопитающих в нем не изменилась ни одна аминокислота. Мелкие изменения в некодирующих участках (интронах) этого гена у человека ассоциируются со склонностью к шизофрении, а небольшое увеличение экспрессии этого гена у тех же мышей вызвало у них серьезные психические отклонения, напоминающие вышеупомянутое душевное заболевание. Все косвенные признаки, казалось бы, говорят о том, что ген должен быть жизненно важным, — однако мыши с отключенным геном SREB2 чувствуют себя превосходно и даже обучаются разным мышиным премудростям быстрее своих немутантных товарок.
Как объяснить такие странные результаты? Неужели многочисленные «ненужные» гены, найденные в ходе подобных экспериментов, действительно совсем не нужны их обладателям? Но если ген становится ненужным, то он, по идее, должен быстро выходить из строя и разрушаться под действием случайных мутаций, не отсеиваемых отбором. Как тогда объяснить высокую консервативность, т. е. эволюционную устойчивость многих из этих генов, что проявляется в высоком уровне их сходства у далеких друг от друга видов?
Самый очевидный (а во многих случаях и единственно возможный) ответ состоит в следующем. Вероятно, эти гены зачем-то все же нужны, но не в тепличных условиях лаборатории, а в природе, где живым существам приходится иметь дело с переменчивыми и малопредсказуемыми факторами среды. Логично предположить, что чем постояннее и предсказуемее условия обитания, тем сильнее может упроститься генетическая программа поведения клетки (или многоклеточного организма). Именно этим объясняют, например, радикальное сокращение геномов у внутриклеточных симбиотических бактерий. Условия, в которых живут лабораторные организмы, предельно стандартизованы (стандартные среды, корма, клетки, освещенность и т. д.), что делает их существование с эволюционной точки зрения мало отличающимся от жизни внутриклеточных паразитов.
Это рассуждение, однако, хорошо бы проверить экспериментально. Именно это и проделали генетики из США и Канады, изучившие «ненужные гены» у дрожжей Saccharomyces cerevisiae (Hillenmeyer et al., 2008). У этого вида грибов можно удалить или отключить 2/3 генов без всякого снижения жизнеспособности. Правда, с одним маленьким уточнением: речь идет о жизнеспособности в стандартных «богатых» лабораторных средах, насыщенных всеми необходимыми веществами.
Авторы использовали коллекции дрожжей-мутантов, где каждый штамм содержит одну делецию (один удаленный ген) в гомозиготном или в гетерозиготном состоянии (т. е. удалены либо обе копии данного гена, либо только одна). Дрожжи, как мы помним из главы з, могут размножаться и половым путем, и бесполым (почкованием), причем способ размножения зависит от условий среды. Поэтому гетерозиготные штаммы можно долго размножать бесполым путем, не опасаясь, что они перестанут быть чисто гетерозиготными.