* * *
ЗАКОН ЭПОНИМОВ СТИГЛЕРА
Многие законы, теоремы, заболевания, научные открытия и постоянные носят имена их первооткрывателей. Так, известны болезнь Альцгеймера, постоянная Эйлера, великая теорема Ферма, комета Галлея и колокол Гаусса. Название события или закона по имени человека называется эпонимом.
Стивен Стиглер, преподаватель статистики Чикагского университета и известный историк статистики, открыл закон, который вкратце звучит так: «Ни одно открытие не носит имя того, кто в действительности его совершил». Если говорить об упомянутых нами примерах, то болезнь Альцгеймера, названная в честь Алоиса Альцгеймера, была описана до него минимум пятью учеными.
Постоянная Эйлера была открыта Якобом Бернулли, великая теорема Ферма в действительности не теорема, а гипотеза Ферма, а доказал ее Эндрю Уайлс в 1995 году. Комета Галлея была известна астрономам еще до Рождества Христова, хотя именно Эдмунд Галлей вычислил ее орбиту и предсказал дату ее возвращения. Если говорить о статистике, то нормальное распределение и диаграмма в форме колокола были открыты и подробно описаны не Гауссом, а французским математиком Абрахамом де Муавром, который опубликовал свои труды по этой теме в 1733 году, почти на 80 лет раньше Гаусса.
Это не означает, что одним ученым незаслуженно достаются лавры других. Некоторые совершают важный вклад в науку или объясняют уже открытое, но не очень известное явление, и по этой причине имена этих ученых остаются в истории. Профессор Стиглер опубликовал статью, посвященную этой теме, но он был не первым: до него об этом писали многие другие ученые, в частности Роберт Мертон, которого нередко цитирует Стиглер. Получается, что закон Стиглера подчиняется сам себе.
Портрет Абрахама де Муавра, который открыл так называемый колокол Гаусса за много лет до этого знаменитого немецкого математика.
* * *
«Живая» гистограмма. Каждый человек стоит в колонне, соответствующей его росту.
(источник: Эдвард Тафти. Наглядное отображение количественной информации. Цитируется работа Brian L. Joiner «Living Histograms», опубликованная в 1975 году в журнале International Statistical Review.)
Есть и еще одна причина, по которой нормальное распределение играет столь значительную роль. Очень часто в статистических исследованиях основное внимание уделяется средним значениям: анализируется средняя урожайность в зависимости от использованного удобрения, среднее значение выборки сравнивается с предполагаемым средним значением генеральной совокупности и так далее. Средние значения варьируются в зависимости от того, каким образом была взята выборка. Их вариацию на практике можно описать с помощью закона нормального распределения, даже если исходные данные генеральной совокупности не подчиняются этому закону. Например, число очков, выпадающее при броске игральной кости, совершенно не подчиняется закону нормального распределения. Это дискретное распределение с шестью возможными значениями: 1, 2, 3, 4, 5 и 6. Вероятность выпадения каждого из них одинакова. Если мы бросаем два кубика и анализируем среднее число выпавших очков, то частота выпадения различных средних значений уже не будет одинаковой.
Наиболее вероятно, что среднее значение будет равно 3,5. Если мы бросаем четыре кубика, то столбиковая диаграмма, представляющая вероятность возможного среднего числа выпавших очков, будет напоминать колокол Гаусса. Если мы будем бросать 10 кубиков, что равносильно взятию выборки величиной 10, то на диаграмме будет очевидно вырисовываться колокол Гаусса. Таким образом, распределение средних значений подчиняется нормальному закону.
Распределение средних значений стремится к нормальному, хотя исходные значения не подчиняются нормальному закону.
Тем не менее хотя этот закон распределения встречается очень часто, название «нормальный» — не самое удачное: можно подумать, что остальные чем-то необычны. Однако это название используется повсеместно, при этом некоторые предпочитают назвать его гауссовым распределением.
Если исходные данные по своей природе подчиняются нормальному закону (это также можно проверить графически или с помощью тестов), то их распределение полностью описывается всего двумя величинами: средним арифметическим, которое определяет центр колокола Гаусса, и среднеквадратическим отклонением, которое определяет форму колокола.
Среднее значение и среднеквадратическое отклонение — две величины, характеризующие нормальное распределение.
Если вес мешков с сахаром подчиняется нормальному закону, среднее значение равно 1000 г, среднеквадратическое отклонение — 5 г, то можно рассчитать, сколько мешков будут иметь вес свыше 1010 г, сколько — от 995 до 1010 г или менее 995 г. До недавнего времени для этого требовалось выполнять расчеты и сверяться со специальными таблицами (которые до сих пор включаются в некоторые учебники по статистике), но сегодня все расчеты можно выполнить автоматически с помощью электронных таблиц Excel. Например, вероятность того, что мешок сахара весит меньше 995 г, равна
Заметим, что приблизительно 16 % мешков имеют вес менее 995 г, но о весе конкретного мешка ничего определенного сказать нельзя. По этой же причине можно говорить об ожидаемой продолжительности жизни населения, но не о конкретной дате смерти отдельного человека.
Также существуют правила, основанные на том, что вне зависимости от среднего значения (μ, читается «мю») и среднеквадратического отклонения (σ, читается «сигма») 68 % значений будут лежать в интервале μ ± σ, 95 % — в интервале μ ± 2σ, 99,7 % — в интервале μ ± 3σ. Так, в прошлом примере среднее значение μ = 1000, среднеквадратическое отклонение σ = 5. В интервале 995—1005 будет лежать 68 % результатов. Следовательно, в этот интервал не попадает 32 % значений, по 16 % с каждой стороны. Это означает, что 16 % мешков будут иметь вес меньше 995 г.
Это правило также можно использовать для интерпретации среднеквадратического отклонения. Если мы рассмотрим распределение роста людей, среднее значение может равняться 170 см. В этом случае среднеквадратическое отклонение должно лежать в интервале 6–7 см, так как 1 или 2 % населения гарантированно имеют рост выше 190 см. Следовательно, это значение превышает среднее на три среднеквадратических отклонения.
Другие виды распределения. Рассуждения о «теоретических» моделях
Существуют и другие законы распределения вероятностей. Например, если случайная величина является непрерывной и все ее значения равновероятны, распределение называется равномерным. Когда мы используем функцию «=СЛЧИС ()» в Excel для генерации случайных чисел, результаты подчиняются именно этому закону. Существует много других законов распределения. На следующей иллюстрации показаны законы распределения, включенные в пакет статистических программ Minitab.
Распределения вероятностей, для которых можно вычислить вероятности напрямую с помощью пакета статистических программ Minitab.
Однако не следует путать модель с реальностью. Например, сфера очень часто встречается во Вселенной, но не существует объектов идеально сферической формы. Зачем же тогда нужны формулы вычисления площади поверхности или объема сферы? Они позволяют получить достаточно точные значения для применения на практике. Это же справедливо и для законов распределения вероятностей.
Один из самых часто используемых примеров нормального распределения — распределение роста людей. Однако если мы возьмем точные данные о росте миллиона взрослых жителей нашей планеты, то увидим, что они не подчиняются нормальному распределению с абсолютной точностью. Этого не произойдет и в том случае, если мы разделим людей на группы в зависимости от пола, расы и других характеристик.
Нормальное распределение — это качественная модель, которая позволяет с достаточной степенью точности оценить рост людей. Тем не менее это всего лишь модель, которая не полностью соответствует реальности. Это же справедливо и для других законов распределения вероятностей, так как на практике гипотезы не выполняются с абсолютной точностью. Все эти законы описывают лишь теоретические модели (определение «теоретическая» для модели является излишним), которые тем не менее крайне полезны.