MyBooks.club
Все категории

Жуан Гомес - Мир математики. т.4. Когда прямые искривляются. Неевклидовы геометрии

На сайте mybooks.club вы можете бесплатно читать книги онлайн без регистрации, включая Жуан Гомес - Мир математики. т.4. Когда прямые искривляются. Неевклидовы геометрии. Жанр: Математика издательство -,. Доступна полная версия книги с кратким содержанием для предварительного ознакомления, аннотацией (предисловием), рецензиями от других читателей и их экспертным мнением.
Кроме того, на сайте mybooks.club вы найдете множество новинок, которые стоит прочитать.

Название:
Мир математики. т.4. Когда прямые искривляются. Неевклидовы геометрии
Автор
Издательство:
-
ISBN:
-
Год:
-
Дата добавления:
13 февраль 2019
Количество просмотров:
196
Читать онлайн
Жуан Гомес - Мир математики. т.4. Когда прямые искривляются. Неевклидовы геометрии

Жуан Гомес - Мир математики. т.4. Когда прямые искривляются. Неевклидовы геометрии краткое содержание

Жуан Гомес - Мир математики. т.4. Когда прямые искривляются. Неевклидовы геометрии - описание и краткое содержание, автор Жуан Гомес, читайте бесплатно онлайн на сайте электронной библиотеки mybooks.club
Многие из нас слышали о том, что современная наука уже довольно давно поставила под сомнение основные постулаты евклидовой геометрии. Но какие именно теории пришли на смену классической доктрине? На ум приходит разве что популярная теория относительности Эйнштейна. На самом деле таких революционных идей и гипотез гораздо больше. Пространство Минковского, гиперболическая геометрия Лобачевского и Бойяи, эллиптическая геометрия Римана и другие любопытные способы описания окружающего нас мира относятся к группе так называемых неевклидовых геометрий. Каким образом пересекаются параллельные прямые? В каком случае сумма внутренних углов треугольника может составить больше 180°? Ответы на эти и многие другие вопросы вы найдете в данной книге.

Мир математики. т.4. Когда прямые искривляются. Неевклидовы геометрии читать онлайн бесплатно

Мир математики. т.4. Когда прямые искривляются. Неевклидовы геометрии - читать книгу онлайн бесплатно, автор Жуан Гомес

Портрет графа де Бюффона, интеллектуала эпохи Просвещения, написанный Друз в 1753 г.

* * *



Пусть Р — вероятность того, что прямая линия будет пересекаться с иглой, тогда мы имеем:


Если <= d, то мы имеем (v/n) = (2·l/π·d), откуда π = (2·l·n)/v·d

Бюффон доказал формулу π = (2·l·n)/v·d прямыми, но очень сложными вычислениями.

Частота, с которой событие происходит, приближается к значению вероятности, то есть значение частоты становится все более и более точным при увеличении количества бросков. Результат Бюффона подвергся серьезной проверке в 1901 г., когда доктор Лазарони бросал иглу 34080 раз и получил значение π = 3,1415929. В настоящее время этот эксперимент можно быстро выполнить с помощью компьютера.

Кроме того, задача Бюффона дает возможность измерять геометрические объекты (длины, площади и т. д.), то есть позволяет формализировать понятие измерения множества линий, плоскостей и т. д. Интегральная геометрия оперирует этими понятиями с большой точностью. Интегральная геометрия широко применяется в биологии и медицине. Например, она лежит в основе компьютерной томографии. В 1979 г. британец Годфри Хаунсфилд получил Нобелевскую премию по медицине за работы по созданию компьютерной томографии на основе интегральной геометрии. Недавняя научная дисциплина, стереология, тоже возникла из интегральной геометрии.

Стереология представляет собой набор научных методов для изучения трехмерного пространства по двумерным сечениям или проекциям на плоскость. Например, она позволяет определить точную форму маски или точную кривизну поверхности. Она используется во всех областях: от статистики и геометрии до медицины и геологии.


От циркуля к компьютерам

Традиционными инструментами евклидовой геометрии являются линейка и циркуль, незаменимые для построения простых фигур. Однако в настоящее время новые технологии позволяют строить более сложные изображения.

Бурное развитие компьютерных технологий позволило нам с помощью компьютеров изображать сложные геометрические структуры и моделировать новые методики, которые невозможно воспроизвести вручную, тем более за разумное время. Эта область математики называется вычислительной геометрией и объединяет математику с новейшими технологиями. У Евклида, конечно, не было возможности работать в этом направлении.

В первой половине XX века казалось, что классическая геометрия уступает свои позиции другой, более абстрактной геометрии. Однако, как ни парадоксально, новые технологии пришли на помощь классической геометрии, которая стала развиваться дальше, объединившись с информатикой. Сегодня часто используются такие выражения, как 2D-проекция или 3D-изображение. Следует отметить, что эти выражения, которыми мы так легко оперируем, относятся к двум евклидовым понятиям: двумерной плоскости и трехмерному пространству.

Благодаря компьютеризации не только возникли новые дисциплины, такие как вычислительная геометрия, но и получили новую жизнь другие классические предметы, например, дискретная и комбинаторная геометрия. Их развитие взаимосвязано: вычислительная геометрия нуждается в очень сложных инструментах, а дискретной и комбинаторной геометрии требуются различные математические теории, такие как векторный, тензорный и гармонический анализ, матричная алгебра и информационные технологии, в частности, алгоритмика.

Дискретная и комбинаторная геометрия изучает сложные комбинации геометрических объектов. Ее основная задача — определение количества основных операций, необходимых для решения задачи данного размера. Таким образом, поиск эффективного алгоритма, который позволяет решить проблему за определенное количество операций, дает ценную информацию о «комбинаторной» сложности задачи.

Эта геометрия изучает отдельные геометрические объекты, такие как многогранники и сферы, а также их расположение в пространстве. Напомним, что в трехмерном пространстве существует только пять правильных выпуклых многогранников, так называемых «Платоновых тел».

Многие задачи, изучаемые этими новыми теориями, имеют важное значение в таких областях, как теория сигналов, машинное зрение и робототехника. Вычислительная геометрия использует сочетание нескольких математических инструментов для решения задач современной жизни, например, в области медицины, особенно в компьютерной томографии или в магнитно-резонансной томографии (МРТ). Вычислительная геометрия также используется в навигаторах, в картографическом программном обеспечении, о котором говорилось в предыдущей главе, и в компьютерном дизайне. Одним из примеров являются системы автоматизированного проектирования (САПР), позволяющие рассматривать проектируемые объекты под разными углами без использования физических моделей.

Вычислительная геометрия также решает простые геометрические задачи в двумерном пространстве. Чтобы задать программу компьютеру, собирается вся необходимая информация с наибольшей точностью вплоть до мельчайших деталей и связей между элементами. Этот набор процедур и упорядоченных инструкций, являющихся частью алгоритма, используется для разработки программ САПР. Компьютеры могут решать геометрические задачи только с помощью программ САПР. Более общие задачи САПР основаны на анализе многогранников и их свойств.



Вычислительная геометрия позволяет строить изображения внутренних органов человеческого тела, например, томограмму (срез) головы.

* * *

АЛГОРИТМИКА

Целью алгоритмики является нахождение вычислительных решений различных задач, возникающих в процессе разработки программ. Эти решения не зависят от конкретного языка программирования, они используют более высокий уровень абстракции. Алгоритмом называется математическое выражение выполняемой задачи. Алгоритм состоит из данных, условий и действий.

Это список последовательных инструкций, которые необходимо выполнить, своего рода рецепт автоматизированных действий.

Список инструкций переводится на язык программирования, который может быть понят электронным устройством, например, компьютером. Программа контролирует действия машины. Хорошим примером являются роботы, работающие на линии по сборке автомобилей (см. рисунок ниже). Их действия запрограммированы с помощью алгоритмов. Инструкции алгоритма не обязательно соответствуют физическим движениям. Они также могут определять, как следует делать очень сложные расчеты.



* * *

Искусственные глаза для роботов

Искусственный интеллект является разделом информатики и занимается разработкой неживых мыслящих приборов. В принципе, таким прибором является любой предмет или вещь, которая способна воспринимать свое окружение, то есть получать информацию, обрабатывать ее и затем выполнять заданные действия. Задача искусственного интеллекта вовсе не тривиальна: она заключается в разработке процессов, при выполнении которых производительность машины будет максимальной для определенного набора данных и имеющейся информации. Другими словами, цель заключается в том, чтобы машина сама решала, какие действия лучше выполнять, а также училась на собственном опыте.

* * *

ПРЕДЕЛЫ ИСКУССТВЕННОГО ИНТЕЛЛЕКТА

Проблемы искусственного интеллекта занимают умы ученых, философов и художников. Современные исследования вызывают огромный интерес средств массовой информации, а научная фантастика будоражит воображение людей картинами будущего, в котором машины настолько умны, что различия между людьми и роботами начинают стираться. Хотя работа над искусственным интеллектом является передним краем технологических исследований, огромный разрыв между вычислительной мощностью человеческого мозга и самых быстрых компьютеров настолько велик, что даже самые умные программы сегодня не могут сравниться с биологическим разумом. Возможные применения искусственного интеллекта ограничены лишь воображением программистов — людей — и нашей способностью понять, как именно наш мозг делает нас такими умными.

* * *

Существуют различные типы данных и способы представления знаний, а также наборы процессов для получения оптимальных результатов. Основные процессы искусственного интеллекта включают контроль систем, автоматическое планирование, способность реагировать на тесты и запросы пользователей, распознавание речи, почерка и образов. Все это достигается с помощью различных математических инструментов: моделирования, интерпретации образов, статистики, геометрии, обработки изображений, графики и так далее.


Жуан Гомес читать все книги автора по порядку

Жуан Гомес - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mybooks.club.


Мир математики. т.4. Когда прямые искривляются. Неевклидовы геометрии отзывы

Отзывы читателей о книге Мир математики. т.4. Когда прямые искривляются. Неевклидовы геометрии, автор: Жуан Гомес. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.