MyBooks.club
Все категории

Жуан Гомес - Мир математики. т.4. Когда прямые искривляются. Неевклидовы геометрии

На сайте mybooks.club вы можете бесплатно читать книги онлайн без регистрации, включая Жуан Гомес - Мир математики. т.4. Когда прямые искривляются. Неевклидовы геометрии. Жанр: Математика издательство -,. Доступна полная версия книги с кратким содержанием для предварительного ознакомления, аннотацией (предисловием), рецензиями от других читателей и их экспертным мнением.
Кроме того, на сайте mybooks.club вы найдете множество новинок, которые стоит прочитать.

Название:
Мир математики. т.4. Когда прямые искривляются. Неевклидовы геометрии
Автор
Издательство:
-
ISBN:
-
Год:
-
Дата добавления:
13 февраль 2019
Количество просмотров:
193
Читать онлайн
Жуан Гомес - Мир математики. т.4. Когда прямые искривляются. Неевклидовы геометрии

Жуан Гомес - Мир математики. т.4. Когда прямые искривляются. Неевклидовы геометрии краткое содержание

Жуан Гомес - Мир математики. т.4. Когда прямые искривляются. Неевклидовы геометрии - описание и краткое содержание, автор Жуан Гомес, читайте бесплатно онлайн на сайте электронной библиотеки mybooks.club
Многие из нас слышали о том, что современная наука уже довольно давно поставила под сомнение основные постулаты евклидовой геометрии. Но какие именно теории пришли на смену классической доктрине? На ум приходит разве что популярная теория относительности Эйнштейна. На самом деле таких революционных идей и гипотез гораздо больше. Пространство Минковского, гиперболическая геометрия Лобачевского и Бойяи, эллиптическая геометрия Римана и другие любопытные способы описания окружающего нас мира относятся к группе так называемых неевклидовых геометрий. Каким образом пересекаются параллельные прямые? В каком случае сумма внутренних углов треугольника может составить больше 180°? Ответы на эти и многие другие вопросы вы найдете в данной книге.

Мир математики. т.4. Когда прямые искривляются. Неевклидовы геометрии читать онлайн бесплатно

Мир математики. т.4. Когда прямые искривляются. Неевклидовы геометрии - читать книгу онлайн бесплатно, автор Жуан Гомес

Векторное изображение представляет собой цифровой рисунок, образованный отдельными геометрическими объектами, то есть линиями, многоугольниками, дугами и т. д. Векторные изображения, в отличие от растровых, могут быть увеличены до бесконечности без потери их очертаний, и поэтому они используются в графическом дизайне или в компьютерных играх для создания виртуальной реальности.

У растровых изображений графический контур не сохраняется по мере увеличения размера.

* * *

ПИКСЕЛЬ

Слово «пиксель» является неологизмом. Оно означает «элемент изображения» и служит минимальной единицей цифрового изображения, которое можно просматривать на различных устройствах, как правило, подключенных к компьютеру, например, на мониторе. Размер пикселя не одинаков, он меняется в зависимости от устройства, используемого для просмотра изображения. Большинство компьютерных мониторов имеют 72 пикселя на дюйм экрана.



Изображение размером 16 на 16 пикселей.

* * *

Следующие фотографии являются увеличением исходного изображения (100 %). Буква А слева — векторное изображение, а буква А справа — растровое изображение.



Многократное увеличение выявляет различие между этими двумя типами. При увеличении векторная буква А (слева) сохраняет качество изображения, в то время как растровая буква А (справа) постепенно превращается в размытую мозаику пикселей. Если мы увеличим изображение достаточно сильно, например, на экране компьютера, мы сможем разглядеть пиксели, из которых оно состоит. Изображение является прямоугольной матрицей пикселей, каждый из которых представляет собой крошечную часть общей картины. Они похожи на маленькие квадраты или прямоугольники и могут быть цветными, черными, белыми или серыми.

Чтобы преобразовать цифровую информацию пикселя в цвет, мы должны знать глубину и яркость цвета, закодированного в пикселе, а также используемую цветовую систему. Например, RGB-система (Red Green Blue — красный, зеленый, синий) позволяет создавать цвета из трех основных цветов: красного, зеленого и синего. Их сочетание определяет, какой цвет мы видим. Большинство компьютерных периферийных устройств — мониторы, сканеры и т. д. — используют систему RGB.

Каждый пиксель кодируется в двоичной системе с помощью строки определенного количества битов. Число различных цветов, которые могут быть представлены пикселями, зависит от количества битов на пиксель (англ, bits per pixel, bpp).

Можно рассчитать количество цветов, которое могут содержать пиксели. Для этого нужно возвести число 2 в степень, равную количеству битов на пиксель.

Ниже приведены наиболее употребительные значения.

1 бит на пиксель: 21 = 2 цвета, так называемые монохромные, или «черно-белые», системы.

2 бита на пиксель: 22 = 4 цвета, видеокарта CGA (цветной графический адаптер).

4 бита на пиксель: 24 = 16 цветов, видеоадаптер VGA (Video Graphics Array).

8 битов на пиксель: 28 = 256 цветов, видеоадаптер Super VGA.

16 битов на пиксель: 216 = 65 536 цветов, система Highcolor.

24 бита на пиксель: 224 = 16 777 216 цветов, система Truecolor.

48 битов на пиксель: 248 = 281 474 976 710 656 цветов, используются в высококачественной полиграфии.

Матричное изображение, или битовая матрица, используется в фотографии или видео-фильме. Действительно, сканеры и цифровые камеры являются аналого-цифровыми преобразователями. Количество пикселей в изображении называется разрешением. Чтобы не перегружать потребителей техническими деталями, торговые марки выражают количество пикселей в изображении одной цифрой. Например, на цифровой камере может быть написано «5 мегапикселей», что означает, что она имеет пять миллионов пикселей. Это также может быть обозначено двумя числами. Например, разрешение 640 х 480 означает, что матрица пикселей содержит 640 столбцов и 480 строк. Вертикальный формат цифрового телевидения имеет 720 столбцов и 576 строк, телевидение высокой четкости (HDTV) — 1080 строк.



В изображении пиксели расположены в виде матрицы — таблицы, состоящей из строк и столбцов.

* * *

SUPER VGA

Изображение SuperVGA формируется М х N пикселями и представляет собой матрицу размером М х N элементов, имеющих 256 значений от 0 до 255.



* * *

Растровые изображения описываются высотой и шириной (в пикселях) и глубиной цвета (в битах на пиксель), что определяет количество цветов, которые могут храниться в каждом пикселе, другими словами, качество цветопередачи изображения.

Компьютерные изображения развиваются очень быстро, достигая все большего качества.

Но эта гонка ограничивается еще одним условием — размером файла. Изображения высокого качества требуют для хранения много места.




Свойства файла показывают характеристики изображения.

* * *

ВИДЕОКАМЕРЫ

Камеры видеонаблюдения, реагирующие на движение, записывают ряд изображений в виде отдельных снимков. Они могут быстро сравнивать каждый снимок с предыдущим путем вычитания матриц двух изображений. Если в результате получается матрица с нулевыми элементами, это означает, что в данном интервале времени не было никакого движения. Ненулевые показатели означают, что два изображения различны. Если изображение изменилось, значит, произошло некоторое движение.

Когда офис банка закрыт, камеры видеонаблюдения с детектором движения записывают и сравнивают фотографии. Если изменений нет (два последовательных изображения одинаковы, разность матриц равна нулю), устройство стирает предыдущую фотографию, чтобы сэкономить место на диске. Сохраняются только изображения с видимыми изменениями. Математика следит за нами!

* * *

Программы для обработки изображений пытаются решить эту проблему различными методами сжатия данных. На профессиональном уровне результаты впечатляют, но для персональных компьютеров простого решения не существует. Чтобы сэкономить место на диске, при сжатии изображений приходится жертвовать данными и, следовательно, качеством. В информатике такие методы называются необратимым сжатием или сжатием с потерей информации.

Часто решение использовать векторное или растровое изображение зависит от метода сжатия. Растровое изображение не может быть увеличено без существенной потери качества. Векторная графика предоставляет возможность рассматривать изображения на любом экране с максимальным разрешением.

* * *

ТРЕХМЕРНЫЕ МАТРИЦЫ

Понятие пиксельной таблицы или матрицы может быть обобщено для трехмерной компьютерной графики, где аналогичная трехмерная таблица состоит из кубических блоков — вокселей. В этом случае информация о цвете хранится в кубических элементах, расположенных в трехмерной матрице. Хотя воксели являются мощным инструментом для передачи сложных форм, они требуют много памяти. Поэтому трехмерные изображения, как правило, хранятся в виде векторной графики.



* * *

Системы автоматизированного проектирования (САПР)

Архитектурные чертежи и промышленные модели традиционно представлялись двумерными проекциями различных видов, например, виды сверху, спереди и сбоку и перспективный вид. Такие чертежи использовались инженерами для изображения своих идей и, в частности, для показа другим. Компьютеры произвели настоящую революцию в мире дизайна.



Сегодня системы автоматизированного проектирования являются основным инструментом для рисования проекций. Однако прежде чем сесть за работу над проектом, инженеру необходимо запрограммировать оборудование так, чтобы оно понимало, что от него требуется. Вычислительная геометрия предоставляет математический аппарат, с помощью которого системы автоматизированного проектирования могут создавать чертежи.

Во-первых, программа использует набор геометрических фигур: прямые и ломаные линии, многоугольники, окружности, эллипсы и кривые Безье.

Кривые Безье были разработаны в 1962 г. для изображения кривых в технических чертежах. Пьер Безье (1910–1999), инженер компании «Рено», описал кривые этого вида в математических терминах. Они первоначально использовались для проектирования самолетов и автомобилей, но позже стали одним из элементов систем автоматизированного проектирования. Компьютерный язык PostScript (Постскрипт), используемый высококачественными принтерами, также основан на кривых Безье. Различные графические редакторы используют термин «безье» для названия некоторых из своих функций. Эти программы просты в использовании и уже давно стали стандартом в графическом дизайне. Все они основаны на векторных изображениях.


Жуан Гомес читать все книги автора по порядку

Жуан Гомес - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mybooks.club.


Мир математики. т.4. Когда прямые искривляются. Неевклидовы геометрии отзывы

Отзывы читателей о книге Мир математики. т.4. Когда прямые искривляются. Неевклидовы геометрии, автор: Жуан Гомес. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.