Единственным образцом первых машин Цузе, дошедшим до наших дней, стала Z4 — первая коммерческая вычислительная машина. Она использовалась во множестве учреждений вплоть до 1959 года. Один из экземпляров Z4 вместе с воссозданной версией Z3 сейчас хранится в Немецком музее Мюнхена. К сожалению, все остальные машины были разрушены во время бомбардировок Берлина.
Машина
Тьюринга и «Колосс»
Алан Тьюринг (1912–1954) в детстве хотел стать врачом, но в итоге стал математиком, философом и специалистом по криптографии, а также создателем современной информатики. Он известен в первую очередь благодаря своим теоретическим работам, однако также сыграл очень важную роль в практической реализации одного из первых компьютеров. Тьюринг сделал свое первое открытие в теоретической математике в 1936 году, решив проблему разрешения (Entscheidungsproblem), сформулированную Давидом Гильбертом. Чтобы справиться с этой задачей, Тьюринг создал модель вычислений, в которой дал формальное определение алгоритму (или программе). Эта модель вошла в историю под названием машина Тьюринга.
В 1928 году влиятельный немецкий математик Давид Гильберт (1862–1943), который в 1900 году предложил знаменитый список задач, начал работу над проблемой разрешения, которую впервые сформулировал Лейбниц. Гильберт считал, что нерешаемых задач не существует. Он предложил гипотезу, согласно которой всегда можно составить программу (алгоритм), которая сможет дать однозначный верный ответ на любой заданный вопрос. Независимо друг от друга Алан Тьюринг и американский математик Алонзо Чёрч доказали, что Гильберт ошибался: нерешаемые задачи существуют, а предложенную Гильбертом программу (алгоритм) составить невозможно. Следовательно, математика не является разрешимой, то есть не существует метода, который позволил бы определить истинность или ложность произвольного математического утверждения.
Математик Алан Тьюринг, считающийся одним из создателей компьютеров.
Чёрч и Тьюринг в своих доказательствах использовали созданные ими модели: первый применял лямбда-исчисление, второй — разработанную им машину. Оба дали формальное определение алгоритму и использовали в своих доказательствах арифметические задачи. Существование арифметических задач, для которых решения отсутствуют, означало бы, что решить любую произвольную задачу также невозможно. Однако работа Тьюринга была намного более доступной и понятной.
Он свел проблему разрешения к проблеме остановки и доказал, что она неразрешима с помощью его машины: нельзя определить алгоритмически, завершит ли данная машина Тьюринга свою работу в какой-то момент или нет. Чёрч и Тьюринг не соперничали; напротив, оба осознавали, что их модели, несмотря на формальные различия, были одинаково мощными, и объединили усилия.
* * *
КАК РАБОТАЕТ МАШИНА ТЬЮРИНГА?
Представим себе бесконечную ленту, на которой записаны входные символы некой задачи и на которой можно печатать. Машина Тьюринга содержит считывающее устройство, расположенное в определенной части ленты. Это считывающее устройство позволяет выполнять считывание и запись на ленту, а программа машины Тьюринга может перемещать считывающее устройство в заданное положение. Возможные состояния машины представляются посредством множества состояний Q. Программирование машины представляется в виде функции перехода, которая определяет новое состояние на основе текущего состояния и входного символа.
Формально машина Тьюринга определяется на основе кортежа из семи элементов. Кортеж — это упорядоченная последовательность элементов, то есть перечень ограниченного числа объектов. Кортежи используются для описания математических объектов, имеющих структуру. Обозначим кортеж, который будет обрабатывать наша машина Тьюринга, как
МТ = (Γ, Σ, Ь, Q, q0, f, F).
Его элементы определяются следующим образом.
• Γ — алфавит, символы которого записываются на ленте.
• Σ Γ — алфавит, символы которого подаются на вход машины. Множество возможных входных символов является подмножеством символов, которые могут быть записаны на ленте. На ленте также будут находиться символы, записанные самой машиной.
• b Γ, Ь Σ: Ь определяет пустое пространство. Это символ, не принадлежащий множеству входных символов. Изначально лента содержит конечное число символов Σ; оставшаяся часть ленты (которая является бесконечной) заполнена символами Ь.
• Q — множество состояний.
• q0 Q — начальное состояние.
• f — функция перехода. Для данного состояния и элемента, записанного на ленте, эта функция определяет новое состояние, записывает символ на ленте и перемещает считывающее устройство влево (I), вправо (D) или же оставляет неподвижным (Р). Таким образом, функция f является функцией вида f: Q x Γ —> Q x Γ х {I, D, Р}.
F Q — множество конечных состояний.
* * *
В апреле 1936 года американский математик Алонзо Чёрч из Принстонского университета опубликовал работу о проблеме разрешения. Чёрч пришел к тому же выводу, что и Тьюринг, доказав, что не все в математике является вычислимым.
В своем доказательстве он использовал лямбда-исчисление, разработанное им совместно с коллегой Стивеном Клини, которое радикально отличалось от машины Тьюринга. Тьюринг опубликовал свое решение проблемы разрешения в августе того же 1936 года. Это была его знаменитая статья «О вычислимых числах в приложении к проблеме разрешения», в которой были переформулированы результаты Курта Гёделя (1906–1978) о пределах доказуемости и вычислений, а также содержались ссылки на работу Чёрча. Вместо того чтобы спорить, кто совершил открытие первым, в сентябре того же года Тьюринг переходит на работу в Принстонский университет, чтобы написать диссертацию о проблеме разрешения под руководством Чёрча. Он защитил диссертацию в 1938 году, получил степень доктора и вернулся в Кембридж. Этот удачный союз талантов принес немалую выгоду всему человечеству.
* * *
БЛЕТЧЛИ-ПАРК И ЭНИГМА
Легендарное шифровальное подразделение Великобритании Блетчли-парк располагалось в графстве Бакингемшир в 80 километрах от Лондона. Во время Второй мировой войны наиболее авторитетные английские ученые работали в Блетчли-парке над взломом немецких шифров. Это подразделение располагалось в одноименном викторианском поместье (сегодня музей криптографии). В Блетчли-Парке был расшифрован код шифровальной машины «Энигма». Эта машина содержала шифровальный механизм, состоящий из вращающихся роторов и колец, который позволял вооруженным силам нацистской Германии расшифровывать и зашифровывать сообщения. Усилия британских ученых по взлому шифра «Энигмы» не пропали даром: считается, что прочтение предположительно секретных сообщений немцев позволило приблизить окончание войны на несколько лет.
* * *
Эти значимые события, касающиеся наиболее теоретической области науки, происходили в один из самых драматичных моментов современной истории. Политическая ситуация в Европе накалялась, и мир двигался к войне. Опасаясь, что Англия вступит в войну с Германией, Тьюринг во время работы над диссертацией начал заниматься криптографией. Британское правительство в 1939 году пригласило его работать в Блетчли-парке вместе с другими исследователями. Перед ними стояла задача взломать секретный шифр немецкой армии — код «Энигмы». Благодаря своим знаниям Тьюринг смог взломать шифр немецких воздушных сил в середине 1941 года, однако в феврале 1942 шифр был усложнен, и сообщения немцев снова стало невозможно прочесть.
Чтобы расшифровать их, Тьюринг и его коллеги разработали несколько вычислительных машин. Тьюринг еще во время работы в Принстоне изобрел машину, позволявшую выполнять умножение. Группа Тьюринга создала машину под названием «Колосс», которая считается первым электронным программируемым компьютером в мире. Было построено десять экземпляров «Колосса». Первый из них начал работу в декабре 1943 года, на два года раньше, чем американский ENIAC. В конце 1942 — начале 1943 года Тьюринг совершил новую поездку в США, чтобы помочь американским военным взломать немецкие шифры. Во время поездки он познакомился с Клодом Шенноном, создателем теории информации и автором определения энтропии.