MyBooks.club
Все категории

Марио Ливио - φ – Число Бога. Золотое сечение – формула мироздания

На сайте mybooks.club вы можете бесплатно читать книги онлайн без регистрации, включая Марио Ливио - φ – Число Бога. Золотое сечение – формула мироздания. Жанр: Математика издательство -,. Доступна полная версия книги с кратким содержанием для предварительного ознакомления, аннотацией (предисловием), рецензиями от других читателей и их экспертным мнением.
Кроме того, на сайте mybooks.club вы найдете множество новинок, которые стоит прочитать.

Название:
φ – Число Бога. Золотое сечение – формула мироздания
Издательство:
-
ISBN:
-
Год:
-
Дата добавления:
13 февраль 2019
Количество просмотров:
796
Читать онлайн
Марио Ливио - φ – Число Бога. Золотое сечение – формула мироздания

Марио Ливио - φ – Число Бога. Золотое сечение – формула мироздания краткое содержание

Марио Ливио - φ – Число Бога. Золотое сечение – формула мироздания - описание и краткое содержание, автор Марио Ливио, читайте бесплатно онлайн на сайте электронной библиотеки mybooks.club
Как только не называли это загадочное число, которое математики обозначают буквой φ: и золотым сечением, и числом Бога, и божественной пропорцией. Оно играет важнейшую роль и в геометрии живой природы, и в творениях человека, его закладывают в основу произведений живописи, скульптуры и архитектуры, мало того – ему посвящают приключенческие романы! Но заслужена ли подобная слава? Что здесь правда, а что не совсем, какова история Золотого сечения в науке и культуре, и чем вызван такой интерес к простому геометрическому соотношению, решил выяснить известный американский астрофизик и популяризатор науки Марио Ливио. Увлекательное расследование привело к неожиданным результатам…Увлекательный сюжет и нетривиальная развязка, убедительная логика и независимость суждений, малоизвестные факты из истории науки и неожиданные сопоставления – вот что делает эту научно-популярную книгу настоящим детективом и несомненным бестселлером.

φ – Число Бога. Золотое сечение – формула мироздания читать онлайн бесплатно

φ – Число Бога. Золотое сечение – формула мироздания - читать книгу онлайн бесплатно, автор Марио Ливио

В этой книге я постараюсь обсудить все эти вопросы более или менее подробно с точки зрения увлекательной истории числа φ. История этой константы, временами запутанная, насчитывает тысячелетия и разворачивается на всех материках. Но при этом я надеюсь рассказать вам еще и интересную историю о человеческой психологии. Наш сюжет отчасти повествует о тех временах, когда физиками и математиками называли себя люди, которых попросту интересовали различные вопросы, разжигавшие в них любознательность. Зачастую подобные люди трудились и умирали, не зная, удастся ли результатам их трудов изменить ход научной мысли или они просто канут в Лету, не оставив и следа.

Однако прежде чем пуститься в этот путь, нам придется поближе познакомиться с числами вообще и с золотым сечением в частности. Откуда, в сущности, появилась сама идея золотого сечения? Что именно заставило Евклида задуматься о том, чтобы разделить отрезок именно в таком соотношении? Моя цель – помочь вам заглянуть в подлинные истоки, так сказать, «золотого исчисления». Для этого мы и предпримем краткую ознакомительную экскурсию во времена зарождения математики.

Гаммы и пентаграммы

В той мере, в какой математические законы относятся к реальности, они не слишком точны, а там, где они точны, они не относятся к реальности.

Альберт Эйнштейн (1879–1955)

Мне видится во Вселенной определенный порядок, и единственный способ сделать его зримым – это математика.

Мэй Сартон (1912–1995)

Когда именно человек начал считать – то есть измерять множество количественным способом – никто не знает. По сути дела, мы даже не знаем, что было раньше – количественные числительные (один, два, три) или порядковые (первый, второй, третий). Количественные числительные показывают просто множественность набора предметов – например, количество учеников в классе. А порядковые числительные, напротив, показывают порядок, последовательность конкретных элементов группы, например, дату – число в месяце – или номер места в определенном ряду в концертном зале. Изначально считалось, что счет возник именно для того, чтобы решать какие-то мелкие повседневные задачи, а из этого, конечно, следует, что первыми возникли количественные числительные. Однако некоторые антропологи полагают, что изначально числа возникли на исторической сцене в рамках каких-то ритуалов, во время которых те или иные действующие лица должны были появляться в определенном порядке, последовательно. Если это так, то, согласно этой концепции, понятие о порядковых числительных появилось раньше, чем о количественных.

Очевидно, чтобы перейти от простого пересчета предметов к подлинному осознанию чисел как абстрактных понятий, потребовался куда более значительный интеллектуальный скачок. Таким образом, поначалу число, вероятно, относилось в основном к контрасту, противопоставлению, причем в ситуациях, имеющих отношение, вероятно, к жизни и смерти (сколько там волков – один или целая стая?), а подлинное понимание того, что две руки и два дня – это выражения одного и того же числа «два», вероятно, пришло лишь спустя многие столетия. Для этого нужно было пройти этап распознавания не только контрастов, но и общих черт, соответствий. Во многих языках сохранились явные следы того, что первоначально простой акт подсчета количества не соотносился с абстрактными представлениями о числе. Например, на островах Фиджи десять кокосовых орехов называются «коро», а десять лодок – «боло». Подобным же образом у народности тауаде, живущей в Новой Гвинее, пары мужского пола, женского пола и смешанные обозначаются разными словами. Да и мы с вами зачастую обозначаем множества различных предметов разными словами: например, мы говорим «табун лошадей», но никогда не скажем «табун собак».

Конечно, абстрактному пониманию числа «два» во многом поспособствовал тот факт, что у людей столько же рук, сколько ног, глаз и грудей. Но и здесь, скорее всего, ушло довольно много времени, чтобы научиться ассоциировать это число с предметами неодинаковыми – например, с двумя основными светилами, солнцем и луной. Нет никаких сомнений, что первоначально люди научились различать один и два, а затем – два и «много». Этот вывод делается на основании результатов исследований, проведенных в XIX веке среди племен, относительно незнакомых с европейской цивилизацией, а также лингвистических различий в терминах, обозначающих различные числа и в древних, и в современных языках.

Три – это уже много

Первые свидетельства того, что числа больше двух когда-то объединялись в понятие «много», мы находим в истории пятитысячелетней давности. В шумерском языке, на котором говорили в Междуречье, числительное «три» – «эш» – служило также обозначением множественности как таковой (как суффикс – s в английском языке). Подобным же образом этнографические исследования населения островов Торресова пролива между Австралией и Папуа – Новой Гвинеей, проведенные в 1890 году, показали, что местные жители пользовались так называемой «системой счета через “два”». Слово «урапун» означало у них «один», «окоса» – «два», а дальше шли различные их сочетания: «окоса-урапун» – «три», «окоса-окоса» – четыре. Для чисел больше четырех островитяне применяли слово «рас» – «много». Почти такие же системы номенклатуры обнаружены и у других туземных племен от Бразилии (ботокудо) до Южной Африки (зулусы). Например, австралийское племя аранда словом «нинта» называло «один», «тара» – «два», а дальше шли «тара-ми-нинта» – «три», «тара-ма-тара» – «четыре», а все остальные числа назывались просто «много». Среди этих племен был также распространен обычай считать предметы не по отдельности, а парами.

Возникает интересный вопрос: почему языки, где приняты подобные системы счета, доходят именно до «четырех» и затем останавливаются (несмотря на то, что они уже выражают «три» и «четыре» через «один» и «два»)? Одно из объяснений состоит в том, что на руках у нас по четыре пальца, находящихся в похожем положении. Другое, более тонкое объяснение гласит, что ответ таится в физиологической ограниченности визуального восприятия человека. Согласно нескольким исследованиям, мы способны охватить одним взглядом – без подсчета – самое большее четыре-пять предметов. Может быть, вы помните, что в фильме «Человек дождя» Дастин Хоффман играет аутиста с необычайно развитой наблюдательностью и памятью на числа (на самом деле подобные способности в реальной жизни встречаются лишь в единичных случаях). В одном эпизоде по полу рассыпаются все зубочистки из коробочки, кроме четырех, и герой Хоффмана с первого взгляда подсчитывает, что на полу их 246. Конечно, рядовому человеку такой фокус не по силам. Это подтвердит всякий, кто когда-либо подсчитывал результаты голосования вручную. Обычный прием при этом – отмечать голоса пятерками, причем первые четыре обозначаются прямыми черточками, а пятый – черточкой поперек первых. Это придумали именно потому, что человеку трудно одним взглядом охватить больше четырех черточек. Подобную систему изобрели в английских пабах, где бармену приходилось подсчитывать количество кружек пива, и там она называется «ворота из пяти перекладин». Любопытно, что эксперимент, описанный историком математики Тобиасом Данцигом (1884–1956) в 1930 году в чудесной книге «Число, язык науки» (Tobias Dantzig, «Number, the Language of Science») показывает, что распознавать и различать до четырех предметов способны также некоторые птицы. Вот что рассказывает Данциг:

Один помещик решил пристрелить ворону, которая свила гнездо на смотровой башне его поместья. Он несколько раз пытался застать птицу врасплох, но безуспешно: при приближении человека ворона улетала из гнезда. А затем устраивалась на дереве вдали и выжидала, когда человек покинет башню, после чего возвращалась в гнездо. Однажды помещик придумал уловку: два человека вошли в башню, один остался внутри, а другой вышел наружу и удалился. Однако обмануть птицу не удалось: она держалась в отдалении, пока не вышел тот, кто оставался в башне. В последующие дни опыт повторили с участием двух, трех, а потом и четырех человек – но безуспешно. Наконец были отправлены пять человек; как и прежде, в башню вошли все, один остался внутри, а остальные вышли и удалились. Тут-то ворона и сбилась со счета. Она не смогла отличить пять от четырех и быстро вернулась в гнездо.

Есть много и других свидетельств в пользу гипотезы, что первоначальные системы счета создавались согласно концепции «один, два, много». Это следует из лингвистических различий в образовании множественного числа и дробей. Скажем, в иврите есть особая форма множественного числа для пар одинаковых предметов (например, рук и ног) и особые слова для предметов, у которых есть две одинаковые части (то есть для брюк, очков, ножниц), отличающиеся от обычного множественного числа. Обычно существительные во множественном числе оканчиваются на «им» в мужском роде и на «от» в женском, однако множественное число для глаз, грудей и т. п. и для предметов, у которых есть две одинаковые части, кончается на «аим». Подобные формы есть и в финском и когда-то, в Средние века, были в чешском. Но главное не это: переход к дробям, который, конечно, требует более основательного знакомства с числами, характеризуется явными лингвистическими отличиями в названиях всех дробей, кроме половины. В индоевропейских языках и даже в некоторых неиндоевропейских, например, в иврите и венгерском, названия трети, пятой части и т. д. в целом образуются от соответствующих числительных – три, пять и т. д. Например, «три» на иврите – «шалош», а «одна треть» – «шлиш». По-венгерски «три» – «харом», а «одна треть» – «хармад». А вот слово «половина» и в этих языках никак не связана с числительным «два». Скажем, по-румынски «два» – «дой», а «половина» – «юмате», на иврите «два» – «штаим», а «половина» – «хеци», по-венгерски «два» – «кеттё», а «половина» – «фел». Из этого можно сделать вывод, что хотя человечество довольно рано поняло, что такое 1/2 как число, однако представление о том, что другие дроби как-то связаны с целыми числами («одна какая-то»), вероятно, возникло лишь после того, как был перейден барьер «три – это уже много».


Марио Ливио читать все книги автора по порядку

Марио Ливио - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mybooks.club.


φ – Число Бога. Золотое сечение – формула мироздания отзывы

Отзывы читателей о книге φ – Число Бога. Золотое сечение – формула мироздания, автор: Марио Ливио. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.