MyBooks.club
Все категории

Симметричные числа и сильная гипотеза Гольдбаха-Эйлера - Николай Иванович Конон

На сайте mybooks.club вы можете бесплатно читать книги онлайн без регистрации, включая Симметричные числа и сильная гипотеза Гольдбаха-Эйлера - Николай Иванович Конон. Жанр: Математика . Доступна полная версия книги с кратким содержанием для предварительного ознакомления, аннотацией (предисловием), рецензиями от других читателей и их экспертным мнением.
Кроме того, на сайте mybooks.club вы найдете множество новинок, которые стоит прочитать.

Название:
Симметричные числа и сильная гипотеза Гольдбаха-Эйлера
Дата добавления:
29 апрель 2023
Количество просмотров:
47
Читать онлайн
Симметричные числа и сильная гипотеза Гольдбаха-Эйлера - Николай Иванович Конон

Симметричные числа и сильная гипотеза Гольдбаха-Эйлера - Николай Иванович Конон краткое содержание

Симметричные числа и сильная гипотеза Гольдбаха-Эйлера - Николай Иванович Конон - описание и краткое содержание, автор Николай Иванович Конон, читайте бесплатно онлайн на сайте электронной библиотеки mybooks.club

В книге исследуются свойства симметричных чисел натурального ряда. На основе указанных свойств показан путь решения гипотезы Гольдбаха-Эйлера. Доказывается несколько теорем, которые позволяют решить проблему Гольдбаха-Эйлера.

Симметричные числа и сильная гипотеза Гольдбаха-Эйлера читать онлайн бесплатно

Симметричные числа и сильная гипотеза Гольдбаха-Эйлера - читать книгу онлайн бесплатно, автор Николай Иванович Конон
class="sup">6

P7

P8

P9

P10

P11

P12

P13

P14

P15

P16

P17

P18

1

3

5

7

11

13

17

19

23

29

31

37

41

43

47

53

59

61

P1

1

1

2

3

4

6

7

9

10

12

15

16

19

21

22

24

27

30

31

P2

3

3

4

5

7

8

10

11

13

16

17

20

22

23

25

28

31

32

P3

5

5

6

8

9

11

12

14

17

18

21

23

24

26

29

32

33

P4

7

7

9

10

12

13

15

18

19

22

24

25

27

30

33

34

P5

11

11

12

14

15

17

20

21

24

26

27

29

32

35

36

P6

13

13

15

16

18

21

22

25

27

28

30

33

36

37

P7

17

17

18

20

23

24

27

29

30

32

35

38

39

P8

19

19

21

24

25

28

30

31

33

36

39

40

P9

23

23

26

27

30

32

33

35

38

41

42

P10

29

29

30

33

35

36

38

41

44

45

P11

31

31

34

36

37

39

42

45

46

P12

37

37

39

40

42

45

48

49

P13

41

41

42

43

47

50

51

P14

43

43

45

48

51

52

P15

47

47

50

53

54

P16

53

53

56

57

P17

59

59

60

P18

61

61

где Pi – простые числа, образующие симметричные пары;

dp – разница соседних простых чисел Pi+1Pi по строке или по столбцу.

Выделим основные свойства построенной таблицы 5:

во-первых, для любого числа 2n по таблице можно составить симметричные пары простых чисел; а

во-вторых, для любой пары симметричных простых чисел можно найти соответствующие им числа n и соответствующее ему четное число 2n.

Пользоваться таблицей очень просто.

Для этого берем любое четное число 2n и в таблице находим соответствующее ему число n. Затем, двигаясь по горизонтальной строке и вертикальному столбцу, выбирается симметричная пара простых чисел.

Например, для четного числа 44, путем деления его на число 2 получаем число n равное 22. Затем по таблице выбираем ячейку с данным числом и пары симметричных простых чисел, соответствующих этому числу путем мысленного движения вверх по столбцу и влево по строке. Для числа 22 таких пар оказалось четыре. В результате имеем пары: (13,31); (7,37); (3,41); (1,43).

Если известна симметричная пара простых чисел и необходимо определить число ей соответствующее, выбирается строка и столбец, соответствующие паре, а затем на пересечении выбранных строки и столбца находиться число n, которому соотноситься выбранная симметричная пара.

Например, для пары простых чисел (13,31) в пересечении строки числа 13 (P6) со столбцом числа 31 (P11) выбираем число n равное 22. Тогда четное число 2n будет равно 44, которое равно сумме симметричной пары чисел.

Изучение полученной таблицы 5 показывает, что, она бесконечна и охватывает все натуральные числа от 1 до .

Это следует из того, что множество простых чисел бесконечно, что позволяет сделать вывод о бесконечности и таблицы 5. В практических целях таблица 5 может ограничиваться тем предельным числом n, до которого исследуются симметричные простые числа.

Анализируя таблицу 5, можно предположить, что для любого числа от 1 до n найдется хотя бы одна симметричная пара простых чисел.

Заметим еще одно важное, но не совсем очевидное свойство таблицы 5.

Если обозначить разность между двумя соседними простыми числами в строке или столбце как dpi , то она будет равна

dpi=pi+1 – pi, (4.1)

где pi – i –тое простое число в строке или в столбце;

pi+1 последующее простое число в строке или в столбце;

i – номер простого числа в строке или столбце.

Анализ показывает, что разности между двумя числами соседних строк или столбцов в таблице равны разности dpi деленной на 2, т.е. шагу симметрии

δi= dpi /2, (4.2)

где i – номер строки или столбца.

Приведем примеры (см. таблицу 5):

Имеем для восьмого (P8) и девятого (P9) столбца i =8,

Δ8= P9P8 = 2319 = 4;

А шаг симметрии будет δ8= dpi/2=2.

Тогда, по всему девятому столбцу имеем:

a19= a18+ δ8=10+2=12;

a29= a28+ δ8=11+2=13;

a39= a38+ δ8=12+2=14;

a49= a48+ δ8=13+2=15;

………………..

a89= a88+ δ8=19+2=21.

Что подтверждается данными таблицы 5.

Далее, к примеру, для шестой (P6) и седьмой (P7) строк i=6 имеем:

a67= a66+ δ6=13+2=15;

a68= a67+ δ7=15+1=16;

a69= a68+ δ8=16+2=18;

a610= a69+ δ9=18+3=21;

………………..

a618= a617+ δ17=36+1=37.

Следует заметить, что в первом примере значение δi для всех элементов в столбце одинаковое, а во втором примере δi изменяется при переходе от одного элемента строки к другой в зависимости от номера столбца.

Если для определенности будем считать, что в верхней строке расположены простые числа a, в крайней левом столбце простые числа b, то чтобы не рассматривать зеркально верхнему треугольнику нижний от главной диагонали треугольник, следует принять условие a b. Тогда в общем виде таблица 5 будет симметрична относительно главной диагонали и все свойства для нижней части таблица 5 будут идентичны свойствам для верхней части.

Таким образом, из вышесказанного обобщения можно записать следующие выражения:

– для всех элементов столбца

a*i+1=a*ii;

– для всех элементов строки

ai+1*=ai*


Николай Иванович Конон читать все книги автора по порядку

Николай Иванович Конон - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mybooks.club.


Симметричные числа и сильная гипотеза Гольдбаха-Эйлера отзывы

Отзывы читателей о книге Симметричные числа и сильная гипотеза Гольдбаха-Эйлера, автор: Николай Иванович Конон. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.