MyBooks.club
Все категории

Истина и красота. Всемирная история симметрии. - Стюарт Иэн

На сайте mybooks.club вы можете бесплатно читать книги онлайн без регистрации, включая Истина и красота. Всемирная история симметрии. - Стюарт Иэн. Жанр: Математика . Доступна полная версия книги с кратким содержанием для предварительного ознакомления, аннотацией (предисловием), рецензиями от других читателей и их экспертным мнением.
Кроме того, на сайте mybooks.club вы найдете множество новинок, которые стоит прочитать.

Название:
Истина и красота. Всемирная история симметрии.
Автор
Дата добавления:
17 сентябрь 2020
Количество просмотров:
130
Читать онлайн
Истина и красота. Всемирная история симметрии. - Стюарт Иэн

Истина и красота. Всемирная история симметрии. - Стюарт Иэн краткое содержание

Истина и красота. Всемирная история симметрии. - Стюарт Иэн - описание и краткое содержание, автор Стюарт Иэн, читайте бесплатно онлайн на сайте электронной библиотеки mybooks.club

Истина и красота. Всемирная история симметрии. читать онлайн бесплатно

Истина и красота. Всемирная история симметрии. - читать книгу онлайн бесплатно, автор Стюарт Иэн

Ядра в атоме составлены из меньших частиц — протонов и нейтронов. Нейтроны, как можно заключить уже из их названия, не несут электрического заряда, но все протоны имеют положительный заряд. Электромагнитное отталкивание между протонами должно бы вызвать распад ядра. Что же удерживает ядро в виде одного целого? Гравитация слишком слаба — вспомните о поросятах на холодильнике. Должна существовать некая другая сила — которую физики назвали сильным ядерным взаимодействием.

Но если сильное взаимодействие может преодолеть электрическое отталкивание, то почему же все протоны во вселенной не слиплись в одно гигантское атомное ядро? Дело в том, что влияние сильного взаимодействия быстро спадает с расстоянием, как только расстояние превышает размер ядра. Итак, сильное взаимодействие является короткодействующим.

Сильное взаимодействие не объясняет явление радиоактивного распада, когда атомы определенных элементов «выплевывают» частицы и излучение, превращаясь при этом в атомы других элементов. Уран, например, является радиоактивным и в конце концов превращается в свинец. Таким образом, должна существовать еще одна субатомная сила. Ею оказывается слабое взаимодействие; оно даже еще более короткодействующее, чем сильное взаимодействие: оно действует только на расстояниях в одну тысячную размера протона [87].

Физика была неизмеримо проще, когда единственными «кирпичиками» материи считались протоны, нейтроны и электроны. Эти «элементарные частицы» составляли атомы, которые, как стало ясно, на самом деле могут распадаться, хотя само название означает «неделимый». В ранней модели Нильса Бора атом представлялся как тесное собрание протонов и нейтронов, вокруг которых вращались гораздо более легкие, удаленные от них электроны. Протон несет фиксированный положительный электрический заряд, электрон несет то же количество отрицательного заряда, а нейтрон электрически нейтрален.

Позднее, по мере развития квантовой теории, этот образ в духе представлений о солнечной системе уступил место более хитрому устройству. Электроны не вращаются вокруг ядра в качестве четко определенных частиц, но некоторым образом размазаны вокруг ядра в виде облаков довольно замысловатых форм. Эти облака лучше всего интерпретируются как облака вероятности [88]. Если смотреть на электрон, то вероятнее всего найти его там, где плотность облаков максимальна, и наоборот, он будет реже встречаться в областях, где облако «разрежено».

Физики изобрели новые способы изучать структуру атома, «разбирая» его на части и исследуя внутреннюю структуру этих частей [89]. Основной метод, которым до сих пор продолжают пользоваться, состоит в том, чтобы ударить по атому другим атомом или частицей и посмотреть, что вылетит из области соударения. Постепенно — эта история слишком сложная, чтобы излагать ее подробно — обнаруживались все новые и новые частицы. Это было нейтрино, которое обладает способностью пройти миллионы километров через свинец, не претерпев столкновения, в силу чего его нелегко детектировать. Далее, это был позитрон, который похож на электрон, но несет противоположный электрический заряд и который был предсказан дираковской симметрией между материей и антиматерией.

Когда число «элементарных» частиц перевалило за шестьдесят, физики стали искать более глубокие классифицирующие принципы. «Кирпичики» материи оказались слишком многочисленными, чтобы быть фундаментальными. Частица каждого типа характеризуется рядом свойств: массой, зарядом, тем, что называется «спином» и представляет собой некое подобие вращения вокруг некоторой оси (за исключением того факта, что это старомодное представление и, чем бы спин ни был, он не сводится к вращению) [90]. Частицы вращаются не в пространстве (как это делают Земля или крутящийся волчок), а в некоторых более экзотических измерениях.

Как и все в квантовом мире, большая часть этих свойств выражается целыми кратными базовых, очень маленьких количеств — квантов. Все электрические заряды выражаются как целые кратные заряда протона. Все спины суть целые кратные спина электрона. Отсутствовала ясность по поводу того, квантуется ли аналогичным образом масса; массы фундаментальных частиц представляли собой мешанину, лишенную всякой структуры.

Стали проявляться и некоторые общие семейные черты. Важное различие потребовалось провести между частицами, спин которых есть нечетное кратное спина электрона, и частицами, спин которых — четное кратное. Причина состоит в свойствах симметрии; спины (живущие в своих экзотических пространствах) вели себя по-разному, если заставить частицу вращаться в обычном пространстве. Некоторым образом, экзотические спиновые и прозаические пространственные измерения оказались связаны.

Нечетные частицы получили название фермионов, а четные [91] — бозонов, по именам двух гигантов физики частиц, Энрико Ферми и Сатьендраната Бозе. По причинам, которые некогда представлялись разумными, спин электрона определен равным 1/2. Таким образом, бозоны имеют целочисленные спины (четные кратные 1/2 являются целыми), а фермионы — спины 1/2, 3/2, 5/2 и т.д., а также противоположные им −1/2, −3/2, −5/2 [92].

Фермионы подчиняются принципу запрета Паули, который гласит, что в любой заданной квантовой системе две различные частицы не могут находиться в одном и том же состоянии в один и тот же момент времени. Бозоны не подчиняются принципу Паули.

К фермионам относятся все хорошо знакомые частицы — фермионами являются протоны, нейтроны и электроны. Кроме того, к фермионам относятся и более экзотические частицы, такие как мюон, тау-лептон, лямбда, сигма, кси и омега, — их имена представляют собой буквы греческого алфавита. Фермионами также являются три типа нейтрино, связанные с электронами, мюонами и тау-лептонами.

У бозонов более загадочные имена, такие как пион, каон и эта.

Специалисты по физике частиц знали, что все эти частицы существуют, и научились измерять их физические свойства. Задача состояла в том, чтобы найти смысл в кажущейся мешанине. Построена ли наша вселенная из чего-то, что случайно подвернулось под руку? Или же имелся некий скрытый план?

Итог подобных размышлений состоял в том, что многие казавшиеся элементарными частицы в действительности оказались составными. Все они построены из кварков. Кварки (слово, заимствованное из «Поминок по Финнегану» [93]) организованы в шесть различных ароматов, получивших условные названия up, down, strange (странный), charm (очарованный), top и bottom. Все они — фермионы со спином 1/2. У каждого имеется свой антикварк.

Есть два способа складывать кварки вместе. Один — это использовать три обыкновенных кварка, и в таком случае получается фермион. Протон, например, состоит из двух up-кварков и одного down-кварка, а нейтрон — из двух down и одного up. Необычная частица, названная омега-минус, составлена из трех странных кварков. Второй способ состоит в том, чтобы использовать кварк и какой-нибудь антикварк, что в результате дает бозон. Они не аннигилируют друг с другом, потому что ядерные силы удерживают их на расстоянии друг от друга [94].

Чтобы все получилось правильно с электрическим зарядом, заряды кварков не могут быть целочисленными [95]. У одних кварков заряд 1/3, у некоторых 2/3. Кварки организованы в три различных «цвета». Таким образом, всего имеется 18 типов кварков плюс еще 18 антикварков. Ах да, есть кое-что еще. Надо добавить некоторое количество частиц, «переносящих» сильные ядерные взаимодействия, которые удерживают кварки вместе. Получающаяся теория обладает немалой математической элегантностью, несмотря на некоторое размножение числа частиц, и известна как квантовая хромодинамика.


Стюарт Иэн читать все книги автора по порядку

Стюарт Иэн - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mybooks.club.


Истина и красота. Всемирная история симметрии. отзывы

Отзывы читателей о книге Истина и красота. Всемирная история симметрии., автор: Стюарт Иэн. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.