MyBooks.club
Все категории

Сергей Бобров - ВОЛШЕБНЫЙ ДВУРОГ

На сайте mybooks.club вы можете бесплатно читать книги онлайн без регистрации, включая Сергей Бобров - ВОЛШЕБНЫЙ ДВУРОГ. Жанр: Математика издательство -,. Доступна полная версия книги с кратким содержанием для предварительного ознакомления, аннотацией (предисловием), рецензиями от других читателей и их экспертным мнением.
Кроме того, на сайте mybooks.club вы найдете множество новинок, которые стоит прочитать.

Название:
ВОЛШЕБНЫЙ ДВУРОГ
Издательство:
-
ISBN:
нет данных
Год:
-
Дата добавления:
13 февраль 2019
Количество просмотров:
167
Читать онлайн
Сергей Бобров - ВОЛШЕБНЫЙ ДВУРОГ

Сергей Бобров - ВОЛШЕБНЫЙ ДВУРОГ краткое содержание

Сергей Бобров - ВОЛШЕБНЫЙ ДВУРОГ - описание и краткое содержание, автор Сергей Бобров, читайте бесплатно онлайн на сайте электронной библиотеки mybooks.club
«В этой книге в занимательной форме рассказывается немало интересного для тех, кто любит точные науки и математику. Читатель узнает о развитии математики с ее древнейших времен, о значении математики в технике, а особенно об одной из важнейших отраслей математики — так называемом математическом анализе. На доступных примерах читатель познакомится с элементами дифференциального и интегрального исчислений. В книге также говорится о неевклидовых геометриях и о той, которая связана с открытиями великого русского геометра П. П. Лобачевского. Читателю предлагается немало занимательных задач, многие из которых сопровождаются подробным разбором.Для среднего и старшего возраста.»Некоторые рисунки и значительная часть чертежей нарисованы заново с целю лучшей читаемости на портативных читалках. В силу этого возможны незначительные расхождения с оригиналом, особенно в использованных шрифтах, расположении и размере надписей на рисунках. Расположение некоторых рисунков по отношению к тексту также изменено. В электронной книге для оформления применяются стили, поэтому для чтения лучше использовать CR3. Таблицы приводятся в формате fb2 и дублируются либо в текстовом, либо в графическом варианте. В связи с многочисленными отсылками к номерам страниц сохранена нумерация печатного оригинала. Номер размещен в конце страницы. — V_E.

ВОЛШЕБНЫЙ ДВУРОГ читать онлайн бесплатно

ВОЛШЕБНЫЙ ДВУРОГ - читать книгу онлайн бесплатно, автор Сергей Бобров

Так вот, берем линейку, которая должна быть длиннее расстояния 2с, и нитку, длина которой равна длине линейки минус 2а. Один конец нитки закрепляем кнопкой в свободном фокусе (то есть не в том, в котором мы закрепили линейку), а другой ее конец

— 376 —

Прошу любить да жаловать! Это сама Лемниската Яковлевна Бернулли. Основное ее свойство в том, что произведение [(F1A) (AF2)] есть величина постоянная, то есть площадь квадрата со стороной F1O равна площади прямоугольника со сторонами F1А и AF2.


прикрепляем к свободному концу линейки. Теперь, если натягивать кончиком карандаша нитку по линейке и в то же время поворачивать линейку около фокуса, карандаш начертит гиперболу.

— Это я тоже вычерчу! — отвечал Илюша. — А параболу?

— А параболу чертят при помощи линейки и угольника. Ты ставишь линейку по директрисе параболы и прикладываешь к ней вплотную угольник малым катетом. Потом берешь нитку, равную по длине большому катету, и закрепляешь ее с одной стороны в фокусе параболы кнопкой, а с другой — в конце большого катета, у острого угла. Натягиваешь нить карандашом, а в то же время заставляешь малый катет угольника скользить по линейке.

— Ну хорошо, — сказал Илюша. — А как же

Можно увидеть Лемнискату, если удастся достать арагонитовую либо селитряную пластинку и рассматривать ее в поляризованном свете.

— 377 —

решается уравнение третьей степени, то есть кубическое? Мы чертили график этого уравнения и находили максимум и минимум ординаты. А как найти корни?

— В частных случаях иногда кубическое уравнение решается довольно просто. Вот задача индусского математика Бхаскара Ачариа, жившего в двенадцатом веке нашей эры:

х3 — 6х2 + 12x; = 35.

Достаточно в левой части прибавить и вычесть восемь, чтобы получить точный куб:

(х3 — 6x2 + 12x — 8) + 8 = 35,

х3 — 6х2 + 12х — 8 = 27;

(x — 2)3 = 27;

х — 2 = 3; х = 5.

Индусский математик нашел только один корень. Другие два будут комплексные, и их легко найти, выделив один из множителей нашего четырехчлена, то есть:


Вот как чертят параболу.

— 378 —

x3 — 6x2+ 12x — 35 = 0;

х3 — 5х2 — х2 + 5х + 7х — 35 = 0;

х2(х — 5) — х (x — 5) + 7 (х — 5) = 0;

(х — 5) (х2 — х + 7) = 0.

Затем ты приравниваешь нулю трехчлен во второй скобке и решаешь квадратное уравнение. Так мы найдем два комплексных корня. А для общего случая есть специальная формула, открытая в шестнадцатом веке итальянским математиком Тарталья, хотя ее чаще называют формулой Кардана, по имени другого математика, современника Тартальи, который ее впервые опубликовал. История этого Тартальи весьма поучительна. В начале шестнадцатого века его родной город Брешиа взяли приступом неприятельские войска. Тарталья, шестилетний мальчик, был найден с разрубленным лицом около бездыханного тела своего отца. Из-за этой раны он так и остался заикой на всю жизнь, а «тарталья» как раз и значит «заика» — это не имя его, а прозвище. Мать его после кончины отца осталась в такой нищете, что взяла своего сынишку из школы, как только он выучил азбуку до буквы «к». Но мальчик горячо любил науку и сам выучился грамоте, потом древним языкам, без которых в то время нельзя было учиться дальше, а затем овладел математикой. А ведь он был до того беден, что даже не мог купить себе бумаги для вычислений и проделывал их на плитах старого кладбища! Тем не менее он стал ученым и сделал немало для алгебры[28]. Вот какая замечательная настойчивость!

— Как наш Ломоносов!

— Правильно! — отвечал Радикс. — Великий был человек Ломоносов. И не зря он выразил уверенность, «что может собственных Платонов и быстрых разумом Невтонов Российская земля рождать».

— А почему он вспоминает Платона?

— Потому что Платон тоже занимался математикой и очень ценил ее. Из его сочинений извлечено теперь много данных о древней науке[29]. Полагают, например, что он дал определение понятию геометрического места. Добавлю, кстати, что кубическая парабола — немаловажная в технике кривая. Например, когда строители железных дорог рассчитывают поворот пути так, чтобы поезд на большой скорости плавно повернул по рельсам, то это закругление нужно рассчитывать именно по кубической параболе.

— 379 —

— Мне еще хочется узнать про максимумы, — попросил Илюша. — Это очень трудно — их определить?

— Да нет, — отвечал Радикс, — не так уж трудно. Давай возьмем пример. Допустим, имеется прямоугольник. Какие надо взять стороны у прямоугольника, чтобы его площадь была наибольшей, если сумма этих двух сторон равна восемнадцати?

— Плохо я что-то понимаю эту задачу! — заметил Илюша.

— Ты слушай, — отвечал Радикс, — и постепенно уразумеешь. Начнем вот с чего. Пусть наши стороны-множители будут а и b, а их сумма будет с, то есть

а + b = с.

Теперь возьмем квадраты их суммы и разности и вычтем один из другого:


(а + b)2 = а2 + 2ab + b2

(аb)2 = а2 — 2ab + b2
------------------------------
(a + b)2 — (ab)2 = 4ab


Так как (а + b) равно с, то мы можем написать:

с2 — (ab)2 = 4ab,

или так еще:

abc2/4 — (аb)2 / 4

Отсюда ясно, что поскольку с есть величина постоянная, то произведение ab изменяется только в зависимости от изменения разности (аb), но так как квадрат этой разности с минусом, то ясно, что это произведение тем больше, чем меньше абсолютная величина разности (аb). Следовательно, произведение двух чисел тогда достигает максимума, когда абсолютная величина их разности достигнет минимума. Тебе это ясно?

— Как будто ясно.

— Ну, поехали дальше! Давай назовем игреком искомое произведение. А части его — одна будет икс, а другая…

— А другая будет восемнадцать минус икс, — подсказал Илюша.

— Верно. Следовательно, игрек будет записан так:

y = x (18 — x)

— 380 —

Теперь возьмем разность наших множителей. Назовем ее игрек со штрихом, то есть игрек-штрих:

y′ = x — (18 — x)

Так как мы хотим, чтобы этот игрек-штрих стал минимальным, то поищем, чему должен равняться икс, если игрек-штрих станет нулем. И напишем:

х — (18 — х) = 0;

х — 18 + х = 0;

2х = 18;

х = 9.

Произведение достигает максимума, когда одна его часть равна девяти, а следовательно, и другая тоже равна девяти. Другими словами, максимальную площадь из всех прямоугольников с одинаковым периметром имеет квадрат. Составим табличку. В третьей графе ее стоит не самая разность, а ее абсолютная величина. Дальше девяти табличку продолжать не стоит: все будет симметрично повторяться в обратном порядке.

x 18x x (18x) x (18x) 1 17 16 17 2 16 14 32 3 15 12 45 4 14 10 56 5 13 8 65 6 12 6 72 7 11 4 77 8 10 2 80 9 9 0 81

Из двух последних столбцов видно, что когда множители равны, то их разность, как и полагается, равна нулю, а произведение их становится наибольшим, то есть достигает максимума.


Сергей Бобров читать все книги автора по порядку

Сергей Бобров - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mybooks.club.


ВОЛШЕБНЫЙ ДВУРОГ отзывы

Отзывы читателей о книге ВОЛШЕБНЫЙ ДВУРОГ, автор: Сергей Бобров. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.