Генотип реализуется в фенотипе только в том случае, если он обеспечивает достаточно адаптивный онтогенез. Взаимосвязь эволюции и онтогенеза – другой сложнейший вопрос теории эволюции. Современные исследования в области генетики показали, что фенотип не строго детерминирован генетической программой развития. Почти в любом онтогенезе можно наблюдать возможность выбора из альтернативных фенотипов, но число возможных направлений онтогенеза ограничено. Такую направленность известный английский эмбриолог К. Уоддингтон назвал канализацией развития (Уоддингтон К., 1964). Наглядным примером этого положения могут служить различные касты общественных насекомых, значительно различающиеся по своей морфологии, но имеющие одинаковый геном. Морфологическое разнообразие в данном случае обусловлено влиянием на генотип разных гормонов, выполняющих функцию «переключателей» для разных генетических программ.
Сами морфогенетические пути представляют собой каскады индукционных взаимодействий. Хотя они исключительно устойчивы, изменения возможны на любой стадии развития. Чем на более ранней стадии онтогенеза возникают какие-либо изменения, тем больший фенотипический эффект мы наблюдаем. Конечно, при этом велика вероятность того, что такие изменения вызовут нарушения онтогенеза и образование нежизнеспособных зародышей. Зато в тех случаях, когда потомство оказывается жизнеспособным, возможны эволюционные события (Рэфф Р., Кофмен Т., 1986).
В эволюционной биологии принято различать два уровня эволюционного процесса:
– микроэволюция – процесс адаптивного изменения популяций до возникновения новых видов;
– макроэволюция – эволюция надвидовых таксонов.
Поскольку приспособительные изменения популяций (макроэволюция) разительно отличаются от картины разнообразия органического мира (макроэволюция), постоянно идет спор о механизмах этих процессов. Большинство сторонников СТЭ придерживаются взглядов о едином механизме микро– и макроэволюции (Симпсон Дж., 1948; Майер Э., 1968). Лагерь сторонников особых механизмов макроэволюции в основном составляют приверженцы «альтернативных» концепций (Stanley S., 1979; Gould S., 1982). Некоторые авторы предлагают выделять три уровня: микроэволюция, видообразование, макроэволюция (Грант Э., 1980; Старобогатов Я. И., 1988).
Взгляды на макроэволюцию разграничивают многие направления эволюционной биологии. Это один из наиболее крупных и одновременно наименее разработанных разделов теории эволюции. Наиболее дискуссионный вопрос эволюционной биологии – роль естественного отбора. Обзор альтернативных теорий эволюции XX века дан в сборнике «В тени дарвинизма» (2003), а также в других работах (Назаров В. И., 2005; Чайковский Ю. В., 2006).
Многообразие альтернативных концепций эволюции можно сгруппировать в три главных направления: ламаркизм, ортогенез (направленная эволюция) и сальтационизм (прерывистая эволюция). Многие концепции в настоящее время представляют только исторический интерес, но все они послужили делу творческого развития эволюционизма. Подробнее эти течения рассмотрены в первом издании книги (Курчанов Н. А., 2007).
В настоящее время в эволюционной биологии наметилась тенденция от противостояния к синтезу положений СТЭ с концепциями направленной эволюции и сальтационизма. Некоторые авторы считают, что они взаимно дополняют друг друга (Алексеев В. П., 1984; Корочкин Л. И., 2002). Действительно, с точки зрения современной генетики направленность развития определяется относительно небольшим числом регуляторных генов, выполняющими функции «переключателей». Такие гены контролируют срок тех или иных событий онтогенеза либо делают выбор возможных путей развития. Чем более раннюю стадию онтогенеза контролирует регуляторный ген, тем больший «каскад» взаимосвязанных процессов следует за ними, тем больший фенотипический эффект можно ожидать от его мутации. В случае появления жизнеспособного потомства при такой мутации возможны резкие филогенетические изменения в духе сальтационизма. Более того, регуляторные гены прежних функций могут долго сохраняться в геноме. В результате мутаций возможно восстановление старого типа развития. Так, несмотря на то что последние зубатые птицы вымерли более 60 млн лет назад, геномы птиц до сих пор содержат генетическую информацию, необходимую для морфогенеза зубов. Экспериментальным путем можно вызвать образование зубов у курицы (Рэфф Р., Кофмен Т., 1986).
Предположение о ведущей роли в морфологической эволюции регуляторных, а не структурных генов было впервые выдвинуто по результатам работ группы американского ученого А. Вильсона (Wilson А. [et al.], 1977). Но такой взгляд на эволюционный процесс заставляет признать обоснованными некоторые положения теорий «направленной» и «прерывистой» эволюции. СТЭ исходит из представлений о случайности мутаций. Однако не все эволюционисты согласны с этим. Закономерный характер эволюционных преобразований можно наблюдать в параллелизме многих ароморфозов. Классическими примерами служат проявления параллельных рядов форм разных групп млекопитающих на изолированных континентах, закон гомологичных рядов наследственной изменчивости растений Н. И. Вавилова.
Направленный характер эволюционных изменений может быть обусловлен сложностью взаимосвязи огромного числа составляющих, формирующих организм, который представляет собой целостную систему. Любые изменения системы обычно затрагивают все составляющие. Поэтому подавляющее большинство изменений для организма неприемлемо и сразу отсекается отбором, причем чем более специализирован вид, тем меньше у него возможностей для эволюционных изменений. Такая ограниченность и придает эволюции определенную направленность.
Вот что пишет на эту тему ведущий российский специалист в области генетики развития Л. И. Корочкин: «Процесс онтогенеза не случаен. Он протекает направленно от стадии к стадии… Отчего же эволюция должна основываться на случайных мутациях и идти неведомо куда?.. Просматривая внимательно различные эволюционные ряды, у представителей которых имеются сходные структурные образования, можно увидеть наличие как бы предопределенного, генетически “запрограммированного” в самой структуре ДНК филогенеза…» (Корочкин Л. И., 2002).
Не закончен спор сторонников СТЭ и ламаркизма. В разделе, посвященном проблеме наследования приобретенных признаков, говорилось о «живучести» этого направления. Новый толчок дискуссиям о ламаркизме дали открытия явлений горизонтального переноса генов и механизма прионных болезней.
Возможно, эволюционная биология находится сейчас на пороге еще одного «нового синтеза».
8.4. Эволюция генов и геномов
Анализ структуры и изменчивости генетического материала служит основой для различных теорий эволюции гена как элементарного носителя генетической информации. Какова была исходная организация гена? Или, другими словами, обусловлены ли различия между эукариотическими и прокариотическими генами приобретением интронов эукариотами или потерей интронов прокариотами?
Как ни парадоксально, распространено мнение, что мозаичная структура гена эукариот является более древним типом организации генома, чем непрерывная структура прокариотических генов. Возможно, геном прокариот образовался путем удаления интронов с целью компактизации генетического материала. Однако не все эволюционисты согласны с такой точкой зрения.
Другая не менее сложная проблема генетики – эволюция геномов. Не касаясь всех аспектов этого вопроса, отметим два принципиальных отличия при переходе с прокариотического на эукариотический уровень организации клетки. Это тенденция к большей автономности гена и генетических регуляторных систем, а также хромосомный уровень организации генетического материала.
В сравнительных исследованиях эукариотических геномов просматривается несколько интересных закономерностей. Отсутствует корреляция между размерами генома эукариот и эволюционной сложностью организма. Количество ДНК у некоторых амфибий в десятки раз превышает количество ДНК человека, причем у близкородственных видов амфибий количество ДНК может различаться в 100 раз. Чем выше уровень организации организмов, тем ниже доля экзонов в их геномах. Так, у дрожжей экзоны составляют 70 % генома, у дрозофилы – 20 %, у человека – 1,1–1,4 %.Так-же уменьшается средняя плотность генов на единицу длины генома: у дрожжей – 450 генов на 1 млн п. н., у червя C. elegans – около 200, у человека – всего 10. Вместе с тем геномы демонстрируют высокую степень консервативности. Так, гены человека на 50 % сходны с генами червя C. elegans, а в геноме мыши не обнаружено всего 300 «человеческих» генов (из примерно 30 000), причем 80 % генов почти идентичны(Тарантул В. З., 2003).
Сходство и различие хромосом разных видов позволили выявить метод дифференциальной окраски еще в 1970-х гг. Анализ хромосом человека и человекообразных обезьян показал большую схожесть их структуры. В кариотипе человека хромосома 2, вероятно, образовалась в процессе эволюции в результате робертсоновской транслокации (она соответствует хромосомам 12 и 13 шимпанзе и хромосомам 13 и 14 гориллы и орангутана). Вследствие этой перестройки кариотип человека уменьшился на одну пару. Четыре хромосомы человека отличаются от хромосом шимпанзе перицентрической инверсией. Выявлению гомологии между хромосомами и анализу эволюционных преобразований способствовало секвенирование геномов. Хотя многие группы сцепления в процессе эволюции могут перемещаться, между видами сохраняются гомологии этих участков. Так, нуклеотидные последовательности, составляющие каждую хромосому человека, разбросаны по разным хромосомам мыши. Эту фразу можно прочитать и с «другого конца»: нуклеотидные последовательности, составляющие каждую хромосому мыши, разбросаны по разным хромосомам человека.