Как вы можете вспомнить, именно Минковский был тем самым преподавателем математики, который называл Эйнштейна в его студенческие годы лентяем. В 1902 г. Минковский (русский по происхождению) оставил ЕТН и перебрался из Цюриха в Геттинген (Германия), где ему предложили более привлекательную профессуру (наука тогда была такой же интернациональной, как и сейчас). В Геттингене Минковский познакомился со статьей Эйнштейна, которая произвела на него огромное впечатление. Именно она подтолкнула его к открытию в 1908 г. абсолютного четырехмерного пространства-времени.
На Эйнштейна открытие Минковского впечатления не произвело. Минковский просто переписал законы специальной теории относительности на новом, более математическом языке. Эйнштейн вообще считал, что математики часто затуманивают физические идеи, лежащие в основе законов. В то время как Минковский всячески подчеркивал элегантность его пространственно-временного представления, Эйнштейн шутил, что Геттингенские математики описывают теорию относительности на таком сложном языке, что физикам ее не понять.
Природа, как оказалось, сама решила подшутить над Эйнштейном. В 1912 г., после четырех лет поисков, он понял, что именно пространство-время Минковского необходимо для того, чтобы включить гравитацию в теорию относительности. К сожалению, сам Минковский не узнал об этом: он умер в 1909 г. от аппендицита в возрасте 45 лет.
Я вернусь к абсолютному пространству-времени Минковского позднее в этой главе. Но вначале давайте проследим, какие шаги предпринимал Эйнштейн, пытаясь объединить ньютоновские законы тяготения и специальную теорию относительности, до того, как он воздал должное открытию Минковского.
Закон тяготения Ньютона и попытки Эйнштейна связать его с теорией относительности
Ньютон рассматривал гравитацию как силу притяжения, которая возникает между любыми двумя объектами во Вселенной. Чем больше эти объекты и чем ближе они друг к другу, тем сильнее притяжение. Если быть точнее, сила притяжения пропорциональна произведению масс объектов и обратно пропорциональна квадрату расстояния между ними.
Появление этого закона стало настоящим прорывом в науке. В сочетании с ньютоновскими законами движения он объяснял орбиты, по которым планеты движутся вокруг Солнца, а спутники вокруг планет, причину возникновения океанских приливов и отливов, давал ответ на вопрос, почему все предметы падают на землю. Этот закон дал возможность Ньютону и его соотечественникам определить массу Земли и Солнца1.
В течение двух столетий, разделявших Ньютона и Эйнштейна, точность астрономических измерений повысилась многократно, что позволило подвергнуть теорию тяготения Ньютона еще более строгим испытаниям. Иногда результаты таких измерений казались противоречащими законам Ньютона, но затем неизбежно оказывалось, что либо сами измерения, либо их интерпретация ошибочны. Законы Ньютона одерживали победу вновь и вновь. Например, когда выяснилось, что движение планеты Уран (открытой в 1781 г.) противоречит предсказаниям ньютоновского закона тяготения, возникло подозрение, что это результат воздействия на Уран другой, еще не открытой планеты. Вычисления, сделанные У.Ж Леверье и основанные исключительно на законах Ньютона и наблюдениях за движением Урана, позволили предсказать, в какой точке небесной сферы эта планета должна находиться. В 1846 г. И.Г.Галле обнаружил эту планету, невидимую для невооруженного глаза, направив в эту точку свой телескоп. Эта новая планета, открытие которой стало триумфом ньютоновского закона гравитации, получила название Нептун.
В начале XX века оставалось лишь два очень слабых, но необъяснимых несоответствия астрономических наблюдений с законом тяготения Ньютона. Как оказалось, первое из них, касающееся особенностей орбиты Меркурия, действительно было результатом ошибочности закона тяготения Ньютона. Другое несоответствие — некоторая странность в движении Луны была просто результатом неверной интерпретации астрономических наблюдений. И, как это обычно бывает в случае чрезвычайно точных измерений, было очень сложно понять, заслуживают ли внимания результаты этих двух наблюдений, или хотя бы одно из них.
Эйнштейн чувствовал, что особенность движения Меркурия (аномальное смещение его перигелия, см. Врезку 2.2) — это реальность, а особенности движения Луны — нет. Но даже подозрение, что противоречие между наблюдениями и законом Ньютона действительно имеет место, было для Эйнштейна куда менее интересным и значимым, чем то, что этот закон нарушал недавно сформулированный им (Эйнштейном) принцип относительности («метапринцип», согласно которому все законы физики должны быть одинаковы во всех инерциальных системах отсчета). Поскольку Эйнштейн твердо 39
верил в свой принцип относительности, это означало для него, что закон гравитации Ньютона нуждается в изменении40.
Врезка 2.2
Смещение перигелия Меркурия
Согласно Кеплеру, орбита Меркурия должна представлять собой эллипс, в одном из фокусов которого находится Солнце (левая диаграмма, на которой эксцентриситет орбиты показан в увеличенном виде). Однако в конце XIX века астрономы обнаружили, что орбита Меркурия не совсем эллиптичная. После каждого оборота Меркурий оказывался сдвинутым относительно той точки, где он был во время предыдущего витка. Этот сдвиг можно описывать, используя величину смещения ближайшей к Солнцу точки на орбите Меркурия за один оборот (смещение его перигелия). Астрономы измерили эту величину, и она оказалась равна 1,38 угловой секунды.
ОРБИТА МЕРКУРИЯ ПО КЕПЛЕРУ РЕАЛЬНАЯ ОРБИТА МЕРКУРИЯ
Л 1,38 угловой секунды
Меркурий Перигелий
1,38 угловой секунды ( (сильно г-А ^ преувеличено) V
Вычисления с помощью законов Ньютона предсказывали смещение величиной 1,28 угловой секунды: оно было результатом притяжения Юпитера и других планет. Оставалась необъяснимой 0,1 угловой секунды — аномальный сдвиг перигелия Меркурия. Астрономы утверждали, что погрешность их измерений не превышает 0,01 угловой секунды, однако, если принять во внимание, как малы величины, о которых идет речь (0,01 угловой секунды — это угол, под которым человеческий волос виден с расстояния в 2 километра), легко понять, почему многие физики того времени относились к этим утверждениям с недоверием, и предполагали, что, в конце концов, законы Ньютона все равно окажутся верны.
Рассуждения Эйнштейна были просты: согласно Ньютону, сила гравитационного притяжения зависит от расстояния между притягивающимися объектами (например, Солнцем и Меркурием), но, согласно теории относительности, это расстояние различно в различных системах отсчета. Так, теория относительности Эйнштейна предсказывала, что расстояние между Солнцем и Меркурием будет отличаться примерно на одну миллиардную часть, если измерять его с поверхности Солнца или с поверхности Меркурия соответственно. Если обе системы отсчета, связанная с Солнцем и связанная с Меркурием, одинаково хороши с точки зрения законов физики, какая же из них должна быть использована при определении того расстояния, которое входит в формулу Ньютона? Какую бы из них мы не выбрали, принцип относительности будет нарушен! Это противоречие убедило Эйнштейна в том, что закон тяготения Ньютона неточен.
Дерзость Эйнштейна была беспримерной. Отвергнув ньютоновские понятия об абсолютном пространстве и времени, при том, что для этого практически не было экспериментальных предпосылок, он собирался теперь отказаться от закона тяготения Ньютона, столь успешно применяемого, хотя экспериментальных свидетельств его некорректности бьло еще меньше! На самом деле, Эйнштейн руководствовался не результатами опытов, а собственным, глубочайшим интуитивным видением того, какими должны быть физические законы.
отсчета, на которые не действовало тяготение, гравитацию попросту игнорировала. Поэтому, работая над обзором, Эйнштейн все время искал возможность включить гравитацию в теорию относительности. Как это часто бывает с людьми, увлеченными какой-либо проблемой, даже тогда, когда он не думал непосредственно об этой проблеме, она крутилась у него в подсознании. Озарение пришло ноябрьским днем 1907 г. Эйнштейн позднее писал: «Я сидел на стуле в патентном офисе в Берне, когда внезапная мысль пронзила меня — если человек находится в свободном падении, он не чувствует свой собственный вес!»
Сейчас такая мысль может прийти в голову и вам, и мне, но вряд ли мы с вами сделаем из нее далеко идущие выводы. Но Эйнштейн был не таким, как все. Каждую идею он доводил до логического завершения, выжимая из нее все до последней капли. И для него эта мысль стала шагом к совершенно новому взгляду на гравитацию. Позднее он говорил: «это была самая счастливая мысль в моей жизни».