Щеточка из водяных капель, расширяющаяся по мере роста напряженности электрического поля
А теперь о частоте приседаний или, лучше, так: о времени τ, которое проходит между двумя приседаниями. Его можно определить, рассуждая следующим образом. Растущая со временем капля будет увеличивать свой размер до тех пор, пока давление, оказываемое ею на струю (Рк), не станет равным давлению струи на каплю (Рс). Если нам известны скорость υ и сечение s струи, мы легко можем определить величины Рк и Рс. Они равны отношению соответствующих сил Fк и Fс к сечению струи:
Рк = Fк/sиРс = Fс /s .
Очевидно, Fк = тк. g,аFс = тс.ω, где g — ускорение силы тяжести, которой подвержена капля, тс — масса струи длиной h между наконечником и каплей, а ω — ускорение или, точнее, замедление, с которым движется струя. Так как у выхода из стеклянного наконечника струя имеет скорость υ,а в месте соприкосновения с набухшей каплей ее скорость обращается в нуль, то ω ≈υ / τ
Считая, что средняя скорость струи υcp =υ/2, можно записать, что
тк =υ/2. sρτ , а тс =shρ .
Вот теперь, приравнивая Рк и Рс, получим:
τ ≈ (2h/g)1/2
В наших опытах h = 20 см и, следовательно, τ должно бы равняться —10-1 сек. В действительности τ оказывается немного большим, видимо, из-за того, что набухшая капля не свободно падает, а стекает вдоль струи, испытывая при этом трение о нее. А вот следующее из формулы предсказание, что τ ~h1/2, когда увеличение длины струи, к примеру, в 4 раза должно увеличить время между двумя приседаниями вдвое, — оправдывается.
Вторая кинограмма. Эта кинограмма отражает изменения, которые происходят с концом распадающейся струи, по мере того как возрастает напряженность электрического поля Е. Отчетливо видно, что на конце струи вместо приседающей капли формируется густая щеточка, фонтанчик мелких капель, разлетающихся в разные стороны. С ростом напряженности щеточка становится более широкой, и точка на струе, где начинается ее разветвление, приближается к нижнему электроду. Расстояние между этой точкой и электродом обозначим l — далее оно нам понадобится. Когда напряженность достигла ~ 2000 в/см, практически вся струя начиная от места выхода ее из стеклянного наконечника (он был немного выше нижнего электрода) превращалась в ветвистый фонтан из мелких капель.
Почему? Почему ранее, при небольшой напряженности поля, мелкие капли объединялись в крупную, а при большой напряженности они сочли для себя целесообразным дробиться на еще более мелкие и разлетаться во все стороны сверкающим фонтанчиком? Или, иными словами, почему в сильном электрическом поле капля на кончике струи утрачивает устойчивость и разрывается на множество мелких?
Разрыв капли происходит под влиянием электрического растягивающего давления Ре . Оно побеждает лапласовское, которое, сжимая каплю, стремится сохранить ее.
Электрическое давление, возникающее в электрическом поле, подобно тому, которое разрывает тяжелые атомные ядра, обладающие большим зарядом. Отличие лишь в том, что заряженное ядро находится в поле, которое создано его собственным зарядом, а дробящаяся водяная капля находится в поле, созданном и поддерживаемом внешним источником.
После сказанного легко оценить величину электрического давления. Имея в виду каплю радиуса R , несущую заряд q , можно определить силу, которая разрывает каплю,
В этой формуле все разумно: напряженность электрического поля, необходимая для разрыва струи, оказывается тем больше, чем меньше размер капли и чем больше величина поверхностного натяжения, сжимающего ее. Однако, чтобы эту формулу сопоставить с результатами опыта, необходимо учесть, что напряженность Ек отличается от Е0 — напряженности между пластинами конденсатора. Так как вблизи капли, сидящей на струе, силовые линии поля сгущаются, Ек будет больше, чем Е0.
Расчет показывает, что Ек = Е0 . Удобнее эту формулу переписать в виде:
Последняя формула естественно объясняет понижение точки, в которой начинается распад капель, с ростом напряженности :
l ≈ 1/Eo
Получается своеобразный высоковольтный вольтметр. С его помощью можно определить напряженность, измерив расстояние l.
Вот теперь, пожалуй, опыт Рэлея — Френкеля понят, и обе кинограммы истолкованы.
Радугу творят водяные капли: в небе — дождинки, на поливаемом асфальте — капельки, брызги от водяной струи. Радугу могут сотворить и капли-росинки, которыми осенним утром покрыта низко скошенная трава.
Вначале поговорим о «геометрии» радуги, т. е. о форме и расположении разноцветных дуг, а затем — о «физике» радуги, о том, какие физические законы определяют ее форму и цвета.
«Геометрия радуги» в небе описана давным-давно. Обычно в небе видны две разноцветные концентрические дуги — одна яркая, а другая побледнее. Каждая дуга является честью окружности, центр которой лежит на прямой, проведенной через солнце и глаз наблюдателя. Эта прямая — своеобразная ось, и вокруг нее изогнута радуга. Глаз наблюдателя оказывается в вершине конусов, в основании которых — разноцветные дуги. Образующие этих конусов с осью соответственно составляют углы 42 и 51°. Солнце светит из-за спины наблюдателя, и, чем ниже оно опускается к горизонту, тем выше поднимается вершина радуги. В тот момент, когда солнце касается горизонта, можно увидеть полукруглую радугу — большей она никогда не бывает. Если же солнце поднимется над горизонтом более чем на 42°, вершина яркой радуги уйдет за горизонт.