Шрёдингер с огромным уважением относился к Планку и Эйнштейну и с нетерпением ждал их реакции. К счастью, отзывы были в основном положительными. Как вспоминала Энни, «Планк и Эйнштейн преисполнились энтузиазма с самого начала… Планк сказал: “Я смотрю на это, как ребенок, озадаченный головоломкой”»{63}.
Шрёдингер поблагодарил Эйнштейна в личном письме: «Ваше с Планком одобрение для меня ценнее, чем половина мира. Кроме того, это уравнение… возможно, никогда бы не появилось (по крайней мере, я бы его не открыл), если бы ваша работа не сделала для меня очевидной важность идей де Бройля»{64}.
К тому времени уже были опубликованы несколько работ Гейзенберга, Борна и Йордана с изложением теории матричной механики. Дирак предложил удобные математические обозначения для описания квантовых правил с использованием символов бра и кет[10], что сделало матричную механику гораздо более изящной и понятной. Естественно, возник вопрос о связи волновой механики с матричной, поскольку каждая из них точно описывала атом водорода, хотя и разными способами. Шрёдингер был достаточно осторожен и подчеркивал, что его теория была разработана независимо и совершенно не основывалась на работах Гейзенберга.
Несмотря на то что теории Шрёдингера и Гейзенберга появились независимо друг от друга и что Шрёдингер, естественно, отдавал предпочтение своей, он осознавал, насколько важно продемонстрировать их эквивалентность. Зоммерфельд сразу понял, что теории совместимы — но совместимость необходимо было доказать математически. И вскоре Шрёдингер представил доказательство, которое Паули подкрепил еще более тщательными и скрупулезными выкладками. После установления эквивалентности обеих теорий Шрёдингер начал доказывать, что его подход был более материалистичен и обоснован с физической точки зрения. В конце концов, ведь в его описании электроны непрерывно перемещались в пространстве и во времени, а не прыгали из одного состояние в другое в абстрактном мире матриц.
После серьезных размышлений о следствиях обеих теорий Борн обнаружил в каждой из них слабые стороны, в том числе и в той, которую он сам помог разработать. Бор знал, что матричную механику критикуют за то, что она слишком абстрактна. Волновой подход выглядел более конкретным и наглядным. Он хорошо моделировал процессы, происходящие в реальном физическом пространстве, например столкновения частиц. Борну пришлось признать его изящество, ясность и значимость.
Однако волновая механика предлагала неадекватное описание движения свободного электрона в пустом пространстве. Такая картина не соответствовала экспериментальным данным, которые показывали, что иногда электроны ведут себя как точечные частицы. Картина пульсирующего в пространстве электрона выглядела привлекательно, но не было никаких опытных данных, подтверждающих, что заряд и энергия электрона на самом деле как-то распределялись в пространстве.
Чтобы примирить оба подхода, Борн предложил третий способ: представить волновую функцию как «призрак», который управляет поведением настоящего электрона. Волновая функция сама по себе не обладает никакими физическими характеристиками: ни энергией, ни импульсом. Она «живет» в абстрактном пространстве (которое теперь называется гильбертовым пространством), а не в реальном физическом мире. Это приводит к тому, что о ее существовании становится известно только косвенным образом, когда мы наблюдаем за электронами и получаем информацию о вероятности результатов отдельных измерений. Другими словами, как и в случае матрицы состояний Гейзенберга, волновая функция выступает источником данных о вероятностях.
Борн показал, как можно найти различные наблюдаемые величины с помощью волновой функции, используя ее призрачную, «закулисную» роль. Каждый раз, когда производятся измерения, вероятности различных исходов зависят от собственных состояний конкретного оператора (некоторых математических функций).
Например, для измерения наиболее вероятной координаты электрона необходимо найти собственные состояния оператора координаты и использовать их для вычисления вероятности каждой возможной координаты. А чтобы найти наиболее вероятное значение импульса, необходимо сделать то же самое с оператором импульса и его собственными состояниями. Точное измерение либо координаты, либо импульса означает, что волновая функция электрона совпала с одним из собственных состояний оператора координаты или оператора импульса. Удивительная особенность заключается в том, что, поскольку собственные состояния оператора координаты и оператора импульса образуют различные наборы, вы никогда не можете измерить координату и импульс частицы одновременно. Вам необходимо выбрать очередность измерений: либо сначала измерить координату, а потом импульс, либо наоборот. Как и в случае матричной механики, при изменении порядка выполнения операций изменяется результат.
В интерпретации Борна также можно использовать волновые функции, чтобы определить вероятность того, что электрон перейдет из одного квантового состояния в другое, например вероятность перехода между двумя энергетическими уровнями в атоме. Такой квантовый скачок происходит мгновенно и непредсказуемо, вы можете только оценить его вероятность. Единственный способ увидеть этот скачок — это наблюдение испускания или поглощения фотона атомом. Из-за принципа неопределенности вы не можете отследить движение электрона в пространстве при совершении им квантового скачка.
Словом, подход Борна превратил волновые функции Шрёдингера из физических, материальных волн в волны вероятности. В своей обновленной роли они могут подсказать вам только вероятность того, что электроны обладают определенной координатой или импульсом, и то, какова вероятность, что эти значения как-то изменятся. Вы никогда не сможете определить точные значения обеих величин одновременно. Из-за того что в каждый конкретный момент времени вы не знаете точно, где частица находится и как она движется, вы не можете точно предсказать, где она будет находиться в следующий момент. Таким образом, Борн перевернул детерминистичное описание Шрёдингера, превратив его в вероятностное. Поведение электронов отныне представлялось как последовательность случайных квантовых скачков из одного состояния в другое.
Гейзенберг был согласен с Борном в том, что электроны нельзя в буквальном смысле представлять как волны, «размазанные» по всему пространству. Единственным возможным приложением волновой механики, полагал он, является альтернативный способ расчета матричных компонентов его собственной теории. Ему казалось нелепым представлять электроны в виде волнообразных сгустков, окружающих атомы. Ни один эксперимент не показал, что электроны — это протяженные объекты. Поэтому Гейзенберг принял интерпретацию Борна как удобный способ получения полезных результатов из расчетов, выполненных на основе уравнения Шрёдингера, не заморачиваясь такими нелепыми объектами, как размазанные электроны.
Ситуация сильно осложнилась в октябре 1926 года, когда Шрёдингер по приглашению Бора посетил Копенгаген, чтобы представить там свои новые результаты. Институт теоретической физики, в котором работал Бор, стал святым престолом квантового понтификата с Бором в роли понтифика. Бора окружали увлеченные молодые ученые, среди которых в то время были Гейзенберг, Дирак и Оскар Клейн.
Клейна особенно интересовала волновая механика, поскольку он имел собственную точку зрения на эту тему. Он тоже читал работы де Бройля и хотел построить волновое уравнение, основанное на идее волн материи. Пробуя несколько различных подходов, в конце 1925 года он самостоятельно разработал аналог уравнения Шрёдингера, но из-за болезни не смог опубликовать результаты. Ко времени его выздоровления первая статья Шрёдингера уже увидела свет. Однако Клейн, как и Гордон, получил признание за разработку релятивистской версии этого уравнения.
Клейн также независимо воспроизвел теорию Калуцы — расширение общей теории относительности путем введения дополнительного пространственного измерения с целью описания электромагнетизма и гравитации в рамках единой теории. Как и его предшественник, Клейн надеялся разработать единую теорию природы, которая смогла бы объяснить, как электроны движутся в пространстве под действием комбинации этих двух сил.
Однако, в отличие от теории Калуцы, теория Клейна основывалась на квантовых принципах. Он использовал понятие стоячих волн де Бройля, но интерпретировал их несколько иначе. Вместо того чтобы оборачиваться вокруг атомов, эти волны сворачивались вокруг ненаблюдаемого пятого измерения. Клейн отождествил импульс в пятом измерении с электрическим зарядом. Используя идею де Бройля о том, что длина волны обратно пропорциональна импульсу, он связал максимальный размер дополнительного измерения с минимальным значением импульса и тем самым связал последнее с минимальным электрическим зарядом. Таким образом, он показал, что крошечная величина заряда электрона естественным образом приводит к тому, что пятое измерение должно иметь очень маленький размер. Следовательно, пятое измерение слишком мало, чтобы его можно было наблюдать в эксперименте.