Вот этим-то и объясняется поверхностное натяжение, которое «обнимает» жидкость, и поэтому в свободном состоянии она принимает форму, при которой для данного объема площадь поверхности минимальна. А такой формой является шар – сфера.
На границе с воздухом больше всего поверхностное натяжение у металлов. У расплавленного золота оно 1,1 Н/м (сила, отнесенная к единице длины края поверхностного слоя); у других металлов поменьше: у свинца – 0,45 Н/м, у ртути – 0,47 Н/м, у алюминия 0,52 Н/м. Для обычных жидкостей (кроме ртути) рекордсменом, пожалуй, является вода – 0,073 Н/м, еще меньше у керосина – 0,029 Н/м, у спирта – 0,023 Н/м и меньше всего у эфира – 0,017 Н/м.
Так что из жидкостей, кроме жидких металлов разумеется, вода сильнее всего склонна к «шарообразованию». Раствор мыла в воде несколько снижает поверхностное натяжение, но дает удивительное свойство образовывать пузыри. Сейчас для надувания пузырей существуют особые жидкости, но годится и раствор обычного хозяйственного мыла в дождевой, снеговой, или, в худшем случае, кипяченой воде. Чтобы пузыри держались долго, можно прибавить к мыльному раствору до трети его объема глицерина. Трубочку лучше всего взять керамическую, но можно и толстую соломинку, крестообразно расщепленную на конце. Подойдет и обычная бумажная трубочка. Теперь для лучшего понимания физики поверхностного натяжения жидкостей, а также для эстетического наслаждения попробуем выдуть экзотические пузыри.
Выдувать пузыри лучше всего так. Окунув трубочку в раствор, держат ее отвесно, чтобы на конце образовалась толстая пленка жидкости и осторожно дуют в трубочку. При этом пузырек наполняется теплым воздухом наших легких, который легче окружающего воздуха, и выдутый пузырь поднимется вверх.
Если сразу же удается выдуть пузырь диаметром в 10 см, то мыльный раствор хорош; в противном случае добавляют в жидкость еще мыла до тех пор, пока пузыри не будут достигать такого размера. Но это еще не все. Выдув пузырь, надо обмакнуть палец в мыльный раствор и постараться пузырь проткнуть. Если он не лопнет, то можно приступать к опытам, если же лопнет, надо прибавить еще мыла.
Проводить опыты с мыльными пузырями следует осторожно и спокойно. Освещение должно быть яркое, иначе пузыри не покажут своих радужных переливов. Вот несколько удивительных опытов с пузырями, описанных английским физиком Ч. Бойсом в его книге «Мыльные пузыри».
В мыльный пузырь можно поместить цветок или вазочку. На тарелку или поднос наливают мыльный раствор так, чтобы дно тарелки было покрыто слоем толщиной 2 – 3 мм; в середину кладут цветок или маленькую вазочку и покрывают стеклянной воронкой (рис. 172). Затем, медленно поднимая воронку, дуют в ее узкую трубочку, – образуется мыльный пузырь. Когда же этот пузырь достигает необходимых размеров, наклоняют воронку и осторожно высвобождают из-под нее пузырь. Тогда цветок или вазочка окажутся лежащими под прозрачным полукруглым колпаком из мыльной пленки, переливающейся всеми цветами радуги.
Вместо цветка можно взять, например, статуэтку, поместив на ее голове мыльный пузырь. Для этого надо предварительно капнуть на голову статуэтки немного мыльного раствора, а затем, когда большой пузырь, покрывающий статуэтку, будет выдут, проткнуть его и выдуть внутри него пузырь маленький.
Несколько пузырей можно поместить друг в друге. Из воронки, использованной в предыдущем опыте, выдувают большой мыльный пузырь. Затем погружают соломинку в мыльный раствор так, чтобы только кончик ее, который будет взят в рот, остался сухим, вынимают ее из раствора и просовывают осторожно через стенку первого пузыря до центра. Затем медленно вытягивая соломинку обратно, выдувают второй пузырь внутри первого. Действуя таким образом, можно выдуть несколько пузырей друг в друге.
Пленка мыльного пузыря все время натянута и давит на заключенный в ней воздух. Направив воронку с пузырем к пламени свечи, вы можете убедиться, что давление воздуха внутри пузыря не так уж мало – пламя заметно уклонится в сторону (рис. 173).
Рис. 173. Опыт, подтверждающий давление внутри мыльного пузыря
Следует отметить, что обычные представления о недолговечности мыльных пузырей не вполне обоснованы – при надлежащем обращении удается сохранить мыльный пузырь в продолжение недель. Английский физик Дьюар (создавший термос – сосуд Дьюара) хранил мыльные пузыри в бутылках, хорошо защищающих от пыли. В таких условиях ему удалось сохранять некоторые пузыри месяц и более. Известны случаи, когда мыльные пузыри годами сохранялись под стеклянным колпаком.
Такая прочность и сила натяжения пузырей вызвана тем, что поверхностный разреженный слой там находится и сверху, и снизу, то есть поверхностное натяжение как бы удвоенное.
И еще о мыльной пленке. Это одна из самых тонких вещей, доступных человеческому глазу. Она в 5 000 раз тоньше волоса или папиросной бумаги. При увеличении в 200 раз человеческий волос кажется толщиной с палец, но при таком же увеличении толщина мыльной пленки еще не доступна зрению. Увеличиваем еще в 200 раз – и стенка мыльного пузыря предстает в виде тонкой линии. Волос же при таком увеличении (в 40 000 раз) имел бы толщину свыше 2 м!
И эта тончайшая пленочка выдерживает давление, способное отклонить пламя свечи. Даже если это давление составляет одну тысячную атмосферы, или 100 Па при толщине пленки в 10-5 мм, это равносильно, если пузырь толщиной в 1 мм выдерживал бы 100 атмосфер или 10 МПа! Это обеспечит только прочнейшая сталь, значит, мыльная пленка прочнее стали!
Вот в чем вопрос! Смотря чего мы хотим добиться. Могут ли стальная игла, лезвие бритвы и даже мелкая монета плавать в воде? Можно ли утопить в бокале, наполненном до краев водой, несколько сотен булавок? Можно ли носить воду в решете или плавать в нем? Нет, нет и нет – гласит народная мудрость и подсказывает простой опыт жизни. Да, говорит физика, надо только иметь несмачиваемые поверхности.
Можно ли поднимать воду вверх без насосов? Можно ли пеной поднять медь и железо? Может ли жидкость «выползать» из сосудов? И на эти, казалось бы, невероятные вопросы физика дает положительный ответ, надо только иметь хорошо смачиваемые поверхности.
Одним словом, прежде чем что-то «мочить» или «не мочить», а точнее, смачивать или нет, нужно знать, чего мы хотим добиться.
Хотите носить воду в решете, чтобы опровергнуть народную мудрость? Пожалуйста.
Для этого возьмите проволочное решето с не слишком мелкими ячейками, окуните его сетку в растопленный парафин и затем выньте решето из парафина. Сетка окажется покрытой тонким слоем парафина, едва заметным для глаз.
Решето осталось решетом – в нем есть сквозные отверстия, через которые свободно проходят не только воздух, но и иголка. Теперь вы можете в буквальном смысле слова носить воду в решете. В таком парафинированном решете удерживается довольно высокий уровень воды, не проливающейся сквозь ячейки; надо только осторожно наливать воду и оберегать решето от толчков (рис. 174).
Рис. 174. Вода в парафинированном решете
Почему же вода не проливается? Потому что, не смачивая парафин, она образует в ячейках решета тонкие пленки, обращенные выпуклостью вниз, которые и удерживают воду поверхностным натяжением. Парафинированное решето можно положить на воду, и оно будет держаться на ней. Значит, возможно не только носить воду в решете, в нем могут плавать не слишком тяжелые предметы, чего народная мудрость еще не подметила.
Этот удивительный опыт объясняет ряд обыкновенных явлений, к которым мы настолько привыкли, что не задумываемся об их причине. Смоление бочек и лодок, окрашивание масляной краской и вообще покрытие маслянистыми веществами всех тех предметов, которые мы хотим сделать непроницаемыми для воды, а также прорезинивание тканей – все это не что иное, как изготовление несмачиваемых водой поверхностей. И даже маленькие отверстия в них не будут проницаемы для воды.
Мы что-то говорили о плавании металлических предметов на воде? Пожалуйста.
Начнем с более мелких предметов, например с иголок. Кажется невозможным заставить стальную иглу плавать на поверхности воды, так как плотность стали почти в 8 раз больше, чем воды, между тем это не так уж трудно сделать. Положите на поверхность воды лоскуток бумаги, а на него иголку, слегка смазанную жиром. Теперь остается только осторожно удалить бумагу из-под иглы: другой иглой или булавкой слегка погружают края лоскутка в воду, постепенно подходя к середине. Когда лоскуток весь намокнет, он утонет, а игла останется лежать на поверхности воды (рис. 175).
Рис. 175. Стальная игла на поверхности воды (а) и углубление на воде под иглой (б)
Если иглу намагнитить, то мы получим некое подобие компаса, так как на воде игла легко поворачивается. А если наловчиться, то можно обойтись и без лоскута бумаги: захватив иглу пальцами посредине, уронить ее в горизонтальном положении с небольшой высоты на поверхность воды.