MyBooks.club
Все категории

Кип Торн - Черные дыры и складки времени. Дерзкое наследие Эйнштейна

На сайте mybooks.club вы можете бесплатно читать книги онлайн без регистрации, включая Кип Торн - Черные дыры и складки времени. Дерзкое наследие Эйнштейна. Жанр: Физика издательство неизвестно,. Доступна полная версия книги с кратким содержанием для предварительного ознакомления, аннотацией (предисловием), рецензиями от других читателей и их экспертным мнением.
Кроме того, на сайте mybooks.club вы найдете множество новинок, которые стоит прочитать.

Название:
Черные дыры и складки времени. Дерзкое наследие Эйнштейна
Автор
Издательство:
неизвестно
ISBN:
нет данных
Год:
-
Дата добавления:
9 сентябрь 2019
Количество просмотров:
215
Читать онлайн
Кип Торн - Черные дыры и складки времени. Дерзкое наследие Эйнштейна

Кип Торн - Черные дыры и складки времени. Дерзкое наследие Эйнштейна краткое содержание

Кип Торн - Черные дыры и складки времени. Дерзкое наследие Эйнштейна - описание и краткое содержание, автор Кип Торн, читайте бесплатно онлайн на сайте электронной библиотеки mybooks.club

Черные дыры и складки времени. Дерзкое наследие Эйнштейна читать онлайн бесплатно

Черные дыры и складки времени. Дерзкое наследие Эйнштейна - читать книгу онлайн бесплатно, автор Кип Торн

В течение десятилетий астрономы напряженно работали над составлением каталогов двойных звездных систем, и поэтому Зельдовичу не было надобности вести свой поиск прямо на небе, вместо этого он мог просто искать в звездных каталогах. Однако у Зельдовича не было ни времени, ни терпения, чтобы самому копаться в каталогах, не было у него и соответствующего опыта, чтобы обойти все ловушки. Поэтому, как он обычно поступал в подобных ситуациях, он распорядился временем и талантом другого, на этот раз Октая Гусейнова, аспиранта астронома, уже достаточно много знавшего о двойных звездах. Среди многих сотен хорошо описанных в каталогах двойных звезд Гусейнов и Зельдович вместе нашли пять обещающих кандидатов в черные дыры.

В течение последующих нескольких лет астрономы почти не обращали внимания на этих пять кандидатов. Меня немного раздражало это отсутствие интереса с их стороны, и поэтому 1968 г. я завербовал Вирджинию Тримбл, астронома из Калтеха, помочь мне пересмотреть и расширить список Гусейнова—Зельдовича. Тримбл, которая хотя и защитила кандидатскую диссертацию лишь за несколько месяцев до этого, получила основательную подготовку в астрономии. Она знала обо всех ловушках, с которыми мы могли столкнуться — описанных выше и многих других, и могла их аккуратно учесть. Поискав непос-


8.4. Предложенный Зельдовичем и Салпетером способ обнаружения черной дыры

редственно в каталогах и собрав все опубликованные данные, касающиеся наиболее обещающих двойных звезд, которые мы только смогли найти, мы предложили новый список из восьми кандидатов в черные дыры. К сожалению, во всех восьми случаях Тримбл могла изобрести почти рациональные объяснения темного спутника, не привлекающие черные дыры. Сегодня, четверть века спустя, ни один из наших кандидатов не выжил. Как кажется сегодня, ни один из них в действительности черной дырой не является.

* 1с 1с

Зельдович хорошо знал, когда все это задумывал, что метод поиска с использованием двойных звезд был, в сущности, лотереей, ни коим образом не обеспечивающим успеха. К счастью, его мозговой штурм проблемы поиска черных дыр принес вторую идею — идею, одновременно и независимо от Зельдовича, предложенную в 1964 г. Эдвином Салпетером, астрофизиком из Корнельского университета в Итаке, штат Нью-Йорк.

Представьте, что черная дыра движется через облако газа или, что эквивалентно, с точки зрения черной дыры, мимо нее движется облако газа (рис.8.4). Потоки газа, ускоренные гравитацией черной дыры до околосветовых скоростей, облетают ее с разных сторон и сталкиваются позади черной дыры. Столкновение в виде ударного фронта (неожиданное резкое возрастание плотности) преобразует огромную энергию падения газа в теплоту, заставляя его сильно излучать. Фактически, черная дыра будет служить машиной для превращения части массы падающего газа в тепло и затем в излучение. Как показали Зельдович и Салпетер, эта «машина» может быть весьма эффективной — гораздо эффективней, чем, например, горение ядерного топлива.

В группе Зельдовича эта идея муссировалась в течение двух лет, ее рассматривали то с одной, то с другой точки зрения, ища пути сделать ее более обещающей. Однако это была лишь одна из десятков других, разрабатывавшихся ими идей, касающихся черных дыр, нейтронных звезд, сверхновых и природы Вселенной, и поэтому ей уделялось довольно мало внимания. Затем, однажды в 1966 г., в ходе жаркой дискуссии Зельдович и Новиков поняли, что можно совместить идею двойных звезд и идею падающего газа (рис.8.5).

С поверхности многих звезд дуют мощные ветры газа (в основном гелия и водорода). (Солнце тоже порождает такой ветер, хотя и очень слабый.) Представьте, что черная дыра и звезда, порождающая такой ветер, обращаются по орбите друг относительно друга. Черная дыра будет захватывать часть газового потока, нагревать его в ударном фронте и заставит излучать. На однометровой грифельной доске в своей московской квартире Зельдович вместе с Новиковым оценил температуру сталкивающегося газа — несколько миллионов градусов.

При такой температуре газ излучает немного света. Зато он испускает рентгеновские лучи. Таким образом, заключили Зельдович и Новиков, среди черных дыр, обращающихся вместе со спутником, некоторые (хотя и не многие) должны ярко светиться в рентгеновском диапазоне.

Поэтому для того чтобы искать черные дыры, надо использовать комбинацию оптического и рентгеновского телескопа. Кандидатами в черные дыры будут в таком случае такие двойные звезды, в которых один объект представляет собой оптически яркую, но слабую в рентгеновском диапазоне звезду, а другой — темный в оптическом диапазоне, но яркий в рентгене (черная дыра). Поскольку нейтронные звезды также могут захватывать газ у компаньона, нагревать его в ударном фронте и давать рентгеновское излучение, правильное «взвешивание» оптически темного, но яркого в рентгеновских лучах объекта весьма критично. Нужно быть уверенным, что этот объект тяжелее, чем 2 Солнца, и поэтому это не нейтронная звезда.

В этой стратегии поиска, однако, существовала, по крайней мере, одна проблема. В 1966 г. рентгеновские телескопы были еще чрезвычайно примитивны.


8.5. Предложенный Зельдовичем и Новиковым способ поиска черных дыр. Звездный ветер, дующий с поверхности звезды-спутника, захватывается гравитацией черной дыры. Потоки газов, из которых состоит звездный ветер, огибают черную дыру в противоположных направлениях и сталкиваются с образованием резкого ударного фронта, где нагреваются до температуры в миллионы градусов и испускают рентгеновское излучение. Оптические телескопы должны видеть звезду, обращающуюся вокруг тяжелого темного объекта. Рентгеновские телескопы должны увидеть от этого объекта рентгеновское излучение Поиск

Для астронома недостаток рентгеновских лучей состоит в том, что они не могут проникать через земную атмосферу. (Для людей это достоинство, поскольку рентгеновские лучи вызывают рак и мутации.)

К счастью, физики-экспериментаторы с широким кругозором из Военно-морской исследовательской лаборатории США, под руководством Герберта Фридмана, с 1940 г. работали над тем, чтобы заложить основы космической рентгеновской астрономии. Фридман и его коллеги вскоре после второй мировой войны начали исследовать Солнце, запуская приборы на захваченных немецких ракетах V-2 (Фау-2). Фридман описал их первый запуск 28 июня 1946 г., когда на носу ракеты был установлен спектрограф для изучения ультрафиолетового излучения Солнца. (Поскольку ультрафиолетовые лучи, как и рентгеновские, не могут проникнуть через атмосферу Земли.) На короткое время взлетев над атмосферой и собрав данные, «ракета в соответствии с расчетом вернулась на Землю носом вниз, зарывшись в огромном кратере примерно в 80 футов в диаметре и 30 футов глубиной. Несколько недель, проведенных в раскопках, позволили обнаружить лишь маленькую кучку неидентифицируемых обломков; все обстояло так, будто при столкновении ракета испарилась».

Так неудачно начав, но благодаря изобретательности, настойчивости и напряженной работе Фридмана и других, ультрафиолетовая и рентгеновская астрономия, шаг за шагом, стала приносить свои плоды. К 1949 г. Фридман и его коллеги для изучения рентгеновского излучения Солнца запускали счетчики Гейгера на ракетах Фау-2. К концу 1950-х, Фридман с коллегами, устанавливая счетчики на ракетах теперь уже американского производства — Аэроби (Аэропчела), исследовали ультрафиолетовое излучение не только от Солнца, но и от звезд. Но рентгеновские лучи — дело другое. Каждую секунду Солнце обрушивает около 1 миллиона рентгеновских квантов на каждый квадратный сантиметр счетчиков Гейгера, и поэтому детектировать его рентгеновское излучение относительно несложно. Однако, как показывают теоретические оценки, самая яркая рентгеновская звезда будет в 1 миллиард раз слабее Солнца. Для того чтобы обнаружить такое слабое излучение, требовались детекторы в 10 миллионов раз чувствительнее тех, которые запускал Фридман в 1958 г. Такое усовершенствование, хотя и весьма существенное, все же не было невозможным.

К 1962 г. детекторы были улучшены в 10 000 раз. Осталось добиться тысячекратного выигрыша в чувствительности, и под впечатлением достижений группы Фридмана в соревнование включились другие исследователи. Одна из команд, руководимая Риккардо Джиаккони, станет грозным конкурентом.

Странным образом, успех Джиаккони мог бы разделить Зельдович. В 1961 г. Советский Союз неожиданно прервал взаимный советско-американский трехлетний мораторий на испытание ядерного оружия, испытав самую мощную бомбу, которую когда-либо взрывал человек, — бомбу, разработанную на Объекте группами Зельдовича и Сахарова (глава 6). Американцы в панике начали подготовку новых собственных испытаний. Они должны были стать первыми американскими ядерными испытаниями эры орбитальных космических полетов. Впервые открывалась возможность измерить из космоса рентгеновское и гамма излучение, а также частицы высокой энергии, образующиеся при ядерном взрыве. Такие измерения были необходимы для того, чтобы отслеживать дальнейшие советские испытания бомб. Однако чтобы провести такие измерения в ходе предстоящей американской серии испытаний, требовалась форсированная программа. Организация и руководство были поручены Джиаккони, двадцативосьмилетнему фи-зику-экспериментатору из частной компании Американская наука и техника (Кембридж, штат Массачусетс), недавно начавшему разработ-


Кип Торн читать все книги автора по порядку

Кип Торн - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mybooks.club.


Черные дыры и складки времени. Дерзкое наследие Эйнштейна отзывы

Отзывы читателей о книге Черные дыры и складки времени. Дерзкое наследие Эйнштейна, автор: Кип Торн. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.