* * *
В 1969 г. я провел по приглашению Зельдовича шесть недель в Москве. В один из дней Зельдович сделал перерыв в бомбардировке меня и других новыми идеями (главы 7 и 12) и отвез меня в Московский университет, чтобы представить молодому физику-эксперимента-тору Владимиру Брагинскому. Брагинский, стимулированный результатами Вебера, в течение нескольких лет занимался разработкой техники детектирования гравитационных волн: он был первым экспериментатором после Вебера, вступившим в эту область. Он также в это время проводил захватывающий эксперимент по поиску кварков (фундаментальных строительных блоков протонов и нейтронов) и эксперимент по проверке утверждения Эйнштейна, что все объекты, независимо от их природы и состава, падают в гравитационном поле с одним и тем же ускорением (утверждение, которое лежит в основе описания Эйнштейна гравитации как кривизны пространства).
Я был впечатлен. Брагинский был умен, глубок и имел великолепное чутье в физике; он был приветлив и открыт, мог также легко говорить о политике и о науке. Мы быстро стали близкими друзьями и научились уважать взгляды друг друга. Для меня, либерального демократа в американском спектре политических взглядов, свобода индивидуума была важнее всех других соображений. Ни одно правительство не должно иметь права диктовать кому-либо, как он должен жить. Для Брагинского, который был не доктринерским коммунистом, определяющей была ответственность индивидуума перед обществом. Мы отвечаем за своих собратьев и мы находимся в мире, где злодеи, такие как Иосиф Сталин, могут прийти к власти, если мы не будем бдительны.
Брагинский предвидел то, до чего не додумался больше никто. Во время нашей встречи в 1969 г., а затем снова в 1971 и 1972 гг. он
Слева: Джозеф Вебер, Кип Торн и Тони Тайсон на конференции по гравитационному излучению в Варшаве, Польша, сентябрь 1975 г. Справа: Владимир Брагинский и Кип Торн в Пасадене, Калифорния, октябрь 1984 г. [Слева: фото Марека Хольцмана, предоставлено Анджеем Траутманом; справа: предоставлено Валентином Н. Руденко]
предупреждал меня, что используемые для поиска гравитационных волн твердотельные антенны имеют фундаментальное предельное ограничение. Как он заявлял, это ограничение исходит из законов квантовой механики. Хотя обычно мы думаем о квантовой механике, как о чем-то, что управляет поведением крошечных объектов, таких как электроны, атомы и молекулы, если мы будем проводить достаточно точные измерения колебаний антенны в одну тонну, мы увидим, что эти колебания тоже ведут себя квантовомеханическим образом, и это квантовомеханическое поведение, в конечном счете, вызовет проблемы в детектировании гравитационных волн. Брагинский убедился в этом, проведя расчеты предельной чувствительности пьезоэлектрических кристаллов Вебера и некоторых других видов датчиков, которые можно было бы использовать для измерения колебаний твердотельных антенн.
Я не понимал, о чем говорит Брагинский, я не понимал его аргументов, не понимал его выводов и не понимал их важности и потому не обращал на это особого внимания. Мне казались гораздо более важными другие вещи, которым он меня учил; от него я узнал,
как планировать эксперимент, как разрабатывается экспериментальная установка, как предсказать шум, который будет мешать работе установки, и как бороться с этим шумом, чтобы установка смогла выполнить свою задачу; а от меня Брагинский узнавал о том, как следует понимать законы гравитации Эйнштейна и как выделять их предсказания. Мы быстро становились единой командой, совместным проектом, в который каждый из нас вносил свой опыт и мастерство, и за истекшие два (уже больше трех. — Прим, ред.) десятилетия мы получили много удовольствия от совместной работы и сделали несколько открытий.
Каждый год в начале и середине 1970-х, когда мы виделись в Москве, Пасадене, Копенгагене или Риме, или где-то еще, Брагинский повторял свои предупреждения о квантовомеханической проблеме, подстерегающей детекторы на твердотельных антеннах, и все эти годы я не понимал. Его предупреждения были немного мутными, поскольку сам он полностью не понимал, почему это происходит. Однако в 1976 г., после того как Брагинский и, независимо, Робин Гиффард из Стэнфордского университета смогли сделать это предупреждение более ясным, я вдруг понял. Я, наконец, осознал, что предостережение было серьезным: предельная чувствительность твердотельного детектора серьезно ограничивается принципом неопределенностей.
"к "к "к
Принцип неопределенностей является фундаментальной особенностью законов квантовой механики. Он утверждает, что если вы делаете очень точные измерения положения какого-то объекта, то в процессе измерения вы неизбежно толкаете объект, тем самым, случайным и непредсказуемым образом возмущая его скорость. Чем аккуратнее ваше измерение положения, тем сильнее и тем более непредсказуемо возмущается скорость объекта. Какой бы умный метод измерения положения вы не изобретали, вам не удастся обойти это ограничение природы (см. Врезку 10.2).
Врезка 10.2
Принцип неопределенностей и корпускулярно-волновой дуализм
Принцип неопределенностей тесно связан с корпускулярно-волновым дуализмом (Врезка 4.1), т. е. со свойством частиц вести себя иногда как волны, а иногда как частицы.
Если вы измерите положение частицы (или любого другого объекта, например, торца болванки) и узнаете, что она находится в некоторой области в пределах погрешности измерения, то независимо от того, как волна, соответствующая частице, выглядела до этого, измерительный прибор во время измерения «пнет» волну и загонит ее в границы погрешности. Поэтому волна будет заключена в некоторой области, которая будет выглядеть примерно следующим образом:
Такая сосредоточенная волна содержит много длин волн, покрывающих интервал от размера области погрешности (помеченной сверху словом макс) до малого размера краев, в которых начинается и заканчивается волна (помечено словом мин). Более конкретно сосредоточенная волна может быть представлена в виде суммы или суперпозиции следующих волн колебаний, которые имеют длину волны, уменьшающуюся от макс до мин.
Вспомним теперь, что чем короче длина волны, тем больше энергия колебаний и поэтому тем больше скорость частицы. Поскольку измерение привело к тому, что волна теперь находится в некотором диапазоне длин волн, то энергия и скорость частицы теперь тоже находятся в некотором соответствующем диапазоне. Другими словами, энергия и скорость стали неопределенными.
+///++ л/х/^+-
Подведем итог. Измерение сосредоточивает волну частицы в границах погрешности (первая диаграмма сверху); это приводит к тому, что волна состоит теперь из многих волн в некотором диапазоне (вторая диаграмма); этот диапазон длин волн соответствует некоторому диапазону энергий и скоростей, поэтому скорость оказывается неопределенной. Как бы вы ни старались, вы не сможете избежать появления этой неопределенности скорости при измерении положения частицы. Более того, если более внимательно присмотреться к этой цепочке рассуждений, то можно увидеть, что она предсказывает, что чем точнее ваше измерение, т. е. чем уже границы погрешности, тем больше диапазон длин волн и скоростей и поэтому тем больше неопределенность скорости частицы.
Соотношение неопределенностей управляет не только измерениями микрообъектов, таких как электроны, атомы, и молекулы, но и измерением больших объектов. Однако поскольку большой объект имеет большую инерцию, пинок от измерения изменит его скорость на очень малую величину. (Возмущение скорости будет обратно пропорциональным массе объекта.)
Соотношение неопределенностей, приложенное к гравитационноволновому детектору, говорит, что чем точнее сенсор измеряет положение торца или стороны дрожащей болванки, тем сильнее и случайный пинок по болванке, вызванный измерением.
В случае неточного сенсора пинок может быть малым и несущественным, но поскольку сам сенсор имеет плохую чувствительность, вы не сможете хорошо узнать амплитуду колебаний антенны и, таким образом, не сможете следить за слабыми гравитационными волнами.
В случае чрезвычайно точного сенсора пинок настолько силен, что он существенно изменит колебания болванки. Эти большие непредсказуемые изменения замаскируют эффект от любой гравитационной волны, которую вы попытаетесь обнаружить.
Где-нибудь между этими двумя крайностями находится оптимальная точность сенсора, такая, что его разрешение не настолько плохое, чтобы ничего нельзя было узнать, и не настолько хорошее, чтобы вызвать непредсказуемый сильный пинок. При этом оптимальном разрешении, которое теперь называют стандартным квантовым пределом Брагинского, эффект, оказываемый пинком на чувствительность, равен ограничению чувствительности датчика. Никакой датчик не может контролировать колебания антенны точнее, чем этот стандартный квантовый предел. Насколько велик этот предел? Для двухметровой антенны в одну тонну он примерно в 100000 раз меньше, чем размер атомного ядра.