Глава 2. Почему вы не столь хороши, как думаете?
Если водить машину так просто — почему роботы с этим не справляются? Что показывают эксперименты по обучению роботов вождению
Как пожелаете, мистер Найт. Но поскольку я чувствую, что мы находимся в несколько раздраженном состоянии вследствие усталости… то могу ли я предложить вам в целях безопасности включить автопилот?
K. I. T. T., «Рыцарь дорог»[22]
Тем из нас, кто не занимается нейрохирургией, вождение может показаться самой сложной из всех наших повседневных задач. Это требует не менее чем полутора тысяч «вторичных навыков»{1}. В любой момент времени движения мы сканируем окружающую среду в поисках опасности и информации, сохраняем положение на дороге, оцениваем свою скорость, принимаем решения (около 20 на каждую милю{2}), оцениваем риски, адаптируем имеющиеся инструменты, предсказываем будущие действия других. При этом мы еще можем пить кофе, размышлять о просмотренном накануне эпизоде сериала, успокаивать младенца или проверять голосовую почту. Изучение одного участка трассы в Мэриленде показало, что через каждые 60 см трассы в поле зрения попадает новый элемент информации. Таким образом, при скорости менее 50 км/ч (по расчетам, приведенным в исследовании) водитель должен переработать 1320 «единиц информации», или около 440 слов в минуту{3}. Это сопоставимо с тем, как вы читаете три абзаца этой книги, параллельно разглядывая картинки и занимаясь множеством описанных выше дел, а затем этот цикл повторяется, причем каждую минуту.
Все это дается легко, и мы перестаем обращать на это внимание. Вождение становится чем-то вроде дыхания или рефлекса. Мы просто это делаем. Все происходит как будто само собой. Но вместо того чтобы размышлять вновь и вновь о безграничности человеческих возможностей, стоит лишний раз задуматься, что потребуется, чтобы обучить вождению робота. Изучению этой проблемы посвятили несколько лет работы директор Лаборатории искусственного интеллекта в Стэнфордском университете Себастьян Тран и его команда. В 2005 году Тран и его коллеги выиграли 212-километровую гонку Defense Advanced Research Projects Agency’s Grand Challenge[23] по сложной трассе в пустыне Мохаве. Их «автономное транспортное средство», Volkswagen Touareg по кличке Стэнли, используя лишь навигационную систему GPS, камеры и множество сенсоров, прошло этот путь менее чем за 7 часов со средней скоростью 30 км/ч.
Стэнли выиграл, потому что Тран и его команда после серии неудач изменили инструкции и метод вождения. «Мы начали воспринимать Стэнли как ученика, а не как компьютер, — рассказал мне Тран. — Вместо того чтобы говорить: “В этой ситуации нужно предпринять следующее действие”, мы давали ему пример и начинали его тренировать». Например, команде никак не удавалось просто приказать автомобилю ехать с соблюдением определенного скоростного режима. «Нормальный человек, попав в выбоину, снизит скорость, — рассказал Тран. — Но робот не настолько умен. Он мог бы ехать со скоростью 50 км/ч навстречу своей гибели». Тран взял руль в руки и заставил Стэнли отмечать при прохождении трассы скорость движения и силу тряски, которую могла выдержать подвеска автомобиля. Стэнли внимательно «наблюдал» за реакцией Себастьяна в случае сужения дороги или в ситуациях, когда тряска становилась слишком сильной и возникала угроза поломки.
Стэнли учился водить машину так же, как и большинство из нас: не путем зазубривания правил дорожного движения или просмотра леденящих кровь фильмов на тему дорожной безопасности, а наблюдая за реальным миром с заднего сиденья. Этот процесс заставил Трана поразмыслить над тем, какими должны быть правила обучения. До сих пор они были достаточно просты: по этой дороге от точки А до точки B следует ехать, не превышая определенной скорости. Однако, ставя Стэнли в слишком жесткие рамки, исследователи провоцировали чрезмерную реакцию. Они не хотели, чтобы Стэнли напоминал аутиста (типа героя Дастина Хоффмана в фильме «Человек дождя»[24], который останавливается на середине перекрестка только потому, что сигнал светофора для пешеходов меняется на «Стоп»). А что случится при нарушении правил, ведь на дороге так часто бывает? Разумеется, случается всякое. Могут возникнуть миллионы непонятных ситуаций. Как нам нужно понять, преследует ли полицейская машина с включенными огнями нас или кого-то еще, Стэнли нужно было расшифровать сигналы загадочного мира дороги: что лежит на середине улицы — камень или пластиковый пакет? Что впереди на мостовой: «лежачий полицейский» или человек, упавший с велосипеда? Одни только ограничения на парковку в Нью-Йорке могли привести к тому, что Стэнли сломался бы от перенапряжения.
Все это уже само по себе сложно. А теперь представьте, что это происходит в типичной ситуации — на заполненных машинами улицах больших городов и пригородов. На момент моего знакомства с Траном он как раз разбирался с этой проблемой, готовясь к очередной гонке DARPA под названием Urban Challenge. Трасса была проложена по городу, а внедорожник Стэнли уступил место Джуниору, Volkswagen Passat 2006 года выпуска. Цель соревнования, заявленная DARPA, — «безопасное и точное автономное движение в потоке на скорости 30 км/ч», в том числе «заезд на оживленную трассу, проезд круговых перекрестков, понимание происходящего на загруженных перекрестках и объезд препятствий»{4}.
Мы не всегда действуем правильно, но большинство водителей без особых проблем совершает огромное количество сложных маневров, причем каждый день. Чтобы обучить этому робота, необходимо решить ряд несложных задач. Зато анализировать случайную ситуацию на дороге (чем мы обычно и занимаемся) чрезвычайно трудно. Для этого требуется не только распознавать объекты, но и понимать, каким образом они связаны друг с другом — причем не только в текущий момент, но и в будущем{5}. Тран использует пример водителя, подъезжающего к «островку безопасности» или стоящей машине. «Если машина стоит, вы просто встаете в очередь за ней, — говорит он. “Островок безопасности” вы объезжаете. Люди считают, что мы узнаем “островок безопасности” с первого взгляда. Однако у нас нет технологии, позволяющей взять данные с камеры и распознать “островок”». По словам Трана, Джуниор не может определить тип препятствия на расстоянии свыше 40 метров — он просто понимает, что впереди что-то есть.
У Джуниора есть и некоторые преимущества перед людьми. Собственно, поэтому в автомобилях уже начали появляться адаптивные системы контроля движения, отслеживающие с помощью лазеров расстояние до машин впереди и сзади, а затем подающие команды двигателю. Джуниор способен рассчитать расстояние до идущей впереди машины значительно точнее человека — по словам Майкла Монтемерло, исследователя из Стэнфорда, погрешность не превышает 1 метр. «Люди всегда спрашивают, способен ли Джуниор заметить стоп-сигналы других машин, — рассказал мне Монтемерло. — Мы отвечаем, что это и не нужно. У Джуниора есть возможность достаточно точно измерять скорость других машин. И это позволяет сделать вывод о том, тормозят они или нет. Вместо стоп-сигнала анализируются данные о скорости. Они точнее, чем информация, которую получает в такой ситуации человек».
Правильное вождение предполагает не только точность восприятия, но и умение использовать полученную информацию. Перед Стэнли стояла довольно простая задача. «Это был робот, ехавший в пустыне, — объясняет Монтемерло. — Стэнли воспринимает мир достаточно однобоко, как геометрический объект. Его задача состояла лишь в том, чтобы выбрать пригодную для движения трассу. Но с таким ограниченным восприятием мира он не сможет двигаться по оживленному шоссе. Для этого необходим более высокий уровень осознания поступающей информации». Например, когда мы приближаемся к светофору, на котором только что загорелся желтый свет, то начинается сложный процесс принятия решений и их реализации. Как долго еще будет гореть желтый свет? Хватит ли у меня времени (и места), чтобы затормозить? Успею ли я проехать перекресток, если ускорюсь, и насколько быстрее мне нужно ехать? Ударит ли меня едущая сзади машина, если я резко нажму на тормоза? Висит ли на перекрестке камера, фиксирующая проезд на красный свет? Мокрая ли дорога? Не ударит ли меня в бок машина, начинающая двигаться наперерез?
«Зоной дилеммы» инженеры называют ситуацию, когда автомобиль находится слишком близко к перекрестку, чтобы остановиться на желтый сигнал светофора, но при этом достаточно далеко, чтобы проехать до того, как загорится красный. И это действительно дилемма. Если судить по статистике аварий, то водители чаще всего бьют по тормозам и получают удар от машины сзади. Однако в случае выезда на перекресток удар сбоку обычно оказывается значительно сильнее и опаснее. Что бы вы выбрали — легкую аварию, вероятность которой высока, или серьезную, но менее вероятную? Инженеры могут настроить светофоры так, чтобы желтый свет горел дольше, но это снижает пропускную способность перекрестка. Кроме того, как только об этом станет известно, все больше водителей захотят рискнуть и проехать перекресток.