Рис. 3.10. КОН топливный элемент
Топливные элементы находят себе многочисленные применения. Практически любые устройства, использующие гальванические элементы и аккумуляторы, могут быть успешно переведены на питание от топливных элементов. В разработке находятся воздушно/алюминиевые топливные элементы, пригодные к использованию в сотовых телефонах, и элементы для «laptop» компьютеров. Топливные элементы работают более продолжительное время и имеют улучшенные характеристики.
Если не сейчас, то когда?
Если топливные элементы имеют столь замечательные характеристики, то где же они? Почему мы не видим их в наших портативных компьютерах, видеокамерах и сотовых телефонах? Безусловно, технология производства топливных элементов сильно улучшилась за последнее десятилетие, но по уровню затрат (читайте – стоимости) она не может сравниться с технологиями производства других источников тока. Одна из наиболее развитых технологий использует электроды на основе протонно-обменных мембран (ПОМ) – материала, названного Nation, разработанного концерном Дюпон. Сам материал ПОМ стоит примерно $1000 за кв.м. Удешевление производства подобных мембран и создание других ПОМ – материалов представляет собой первоочередную задачу создания конкурентоспособных топливных элементов.
Платина является дорогим металлом. Электроды топливного элемента обычно покрыты или анодированы платиной. Платиновое покрытие является катализатором, облегчающим протекание химических реакций внутри топливного элемента.
Развитие технологий производства топливных элементов наблюдается и в автомобильной индустрии. Все ведущие автостроительные компании заняты продолжающимися исследованиями по разработке и внедрению технологии топливных элементов. Список компаний, занимающихся подобными исследованиями, напоминает рейтинги «кто есть кто» в научных исследованиях.
Появление на рынке автомобилей, работающих на топливных элементах, ожидается к 2003 году. Канадская компания Ballard Power Systems, основной игрок на рынке производства ПОМ технологий, запускает в производство серию автобусов, работающих на топливных элементах. В производстве топливных элементов Ballard объединил свои усилия с такими известными компаниями как DaimlerChrysler и Ford Motor. Ballard недавно ввел в строй предприятие, рассчитанное на выпуск 160.000 коммерческих топливных элементов ежегодно.
Honda планирует перейти к выпуску автомобилей, работающих на топливных элементах уже 2007 году. Она будет использовать существующие модели автомобилей с электрическими двигателями, разработанными для питания от аккумуляторов, и будет заменять их топливными элементами.
Продолжение исследований в области технологий топливных элементов встречается с энтузиазмом и находит широкую поддержку. Перед тем как покинуть президентское кресло, президент Клинтон вместе с конгрессом ассигновал $ 100.000.000 для продолжения исследований в области создания технологий топливных элементов на 2001 фискальный год.
Когда топливные элементы станут неотъемлемой частью нашего обихода, как видеокамеры, сотовые телефоны и портативные компьютеры, мы сможем использовать их для питания наших роботов.
Глава 4
Системы движения и привода
В этой главе будут рассмотрены некоторые компоненты систем движения и привода, которые могут быть использованы в конструкциях роботов. Некоторые схемы подобных компонентов будут рассмотрены в этой главе, другие варианты конструкций схем движения и привода будут обсуждаться в следующих главах. Мы остановимся на следующих конструкциях: воздушные мышцы, нитиноловая проволока, шаговые двигатели, двигатели постоянного тока с редукторами, сервомоторы и соленоиды.
Воздушная мышца представляет собой простое устройство, предложенное в 1950-х годах Дж. Л. МакКиббеном. Подобно биологическому прототипу воздушная мышца сокращается при активировании. Интересен тот факт, что воздушная мышца представляет собой достаточно точную копию биологической мышцы-прототипа, что позволяет исследователям, прикрепляя подобные мышцы к точкам скелета, соответствующим положению «живой» мускулатуры, моделировать биомеханические и иннервационные процессы низкого уровня, характерные для биологической мышцы. В опубликованной литературе подобные конструкции также называются воздушными мышцами МакКиббена, искусственными пневматическими мышцами МакКиббена и «Резиномышцами». Я буду использовать название «воздушная мышца».
Воздушные мышцы находят применение в робототехнике, биомеханике, создании искусственных протезов конечностей и промышленности. Основной причиной, по которой экспериментаторы и любители охотно используют воздушные мышцы, является простота их конструкции и легкость использования в сравнении с обычными пневматическими цилиндрами. Воздушные мышцы имеют малый вес, «гибкую» конструкцию и высокое отношение развиваемой ими силы по отношению к собственному весу (400:1); они выдерживают продольное скручивание, не требуют параллельности закрепления концов и могут быть изогнуты внешним ограничителем без нарушения работы.
Принцип работы воздушной мышцы
Воздушная мышца состоит из двух основных частей: внутренней растягивающейся мягкой резиновой трубки и внешней сетчатой ячеистой оплетки (рукава), изготовленного из капрона (см. рис. 4.1). Резиновая трубка называется «внутренним пузырем» и заключена внутрь рукава оплетки.
Рис. 4.1. Устройство и работа воздушной мышцы
Прочие компоненты включают воздушный патрубок на одном конце резиновой трубки и две петли на каждом из концов воздушной мышцы, позволяющие прикрепить мышцу к остальной части конструкции.
При подаче давления во внутренний пузырь он расширяется и давит изнутри на стенки рукава оплетки, что вызывает увеличение его диаметра. Физические характеристики рукава таковы, что его продольное сокращение пропорционально увеличению его диаметра, что обусловливает появление силы сокращения в воздушной мышце.
Необходимо отметить, что для правильной работы мышцы в состоянии «покоя» она должна быть растянута или нагружена. В противном случае эффект сжатия не будет выражен. Как правило, подобные конструкции воздушной мышцы способны сжиматься до 25 % от их первоначальной длины.
Нитинол представляет собой сплав, относящийся к классу материалов, обладающих «памятью» формы. Нитинол обычно выпускается в виде проволоки. При нагревании материал способен сокращаться до 10 % от первоначальной длины. Подобное сокращение способно производить линейное движение. Кроме свойства сокращения, этот сплав обладает свойством «памяти».
Эффект памяти является уникальным свойством этого сплава. При нагревании до температуры критического перехода сплав автоматически приобретает первоначально заданную форму. Процесс задания первоначальной формы, которую «помнит» материал, называется процедурой термального отжига. Сплав принудительно заключается в требуемую форму и подвергается процессу отжига при температуре выше критической. Такой процесс приводит к изменению кристаллической решетки сплава. После этого при любом повышении уровня температуры выше критической материал «вспомнит» приданную ему первоначально форму. Изделие из такого материала можно подвергать изгибу или скручиванию, но оно обязательно примет исходную форму при критическом нагревании.
Эти уникальные свойства определяются структурой кристаллической решетки сплава. Возвратная сила может достигать 1500 грамм на кв. см. Вряд ли кто-то будет использовать материал столь большого поперечного сечения. Даже достаточно тонкая проволока способна производить очень большую силу. К примеру, проволока диаметром 6 мм создает возвратную силу в 350 грамм.
Объем нитиноловой проволоки при сокращении до уровня 10 % остается постоянным. По мере сокращения ее диаметр пропорционально возрастает, обеспечивая постоянство объема.
Наиболее простым способом нагревания нитиноловой проволоки является пропускание через нее электрического постоянного тока (см. рис. 4.2) Однако длительное пропускание постоянного тока может привести к разрушению проволоки в силу ее неравномерного омического нагрева. Повреждений проволоки при нагревании и поддержании в нагретом состоянии можно избежать, использую широтно-импульсный источник постоянного тока.
Рис. 4.2. Бабочка с нитиноловой проволокой
Некоторые конструкторы роботов используют нитиноловую проволоку в приводе безмоторного шестиногого движущегося робота. Робот действительно способен передвигаться, но делает это крайне медленно, поскольку для цикла нагревания и охлаждения нитиноловой проволоки требуется значительное время. Конструкция такого шестиногого «ползающего» робота очень легка (он весит несколько унций), однако он имеет достаточную мощность, чтобы нести «на себе» собственный источник питания.