Интегральные стабилизаторы напряжения положительной полярности серии 78ХХ содержат микросхемы с аналогичным схемотехническим построением и отличаются уровнями выходного напряжения. Выбран следующий ряд положительных напряжений стабилизации (в вольтах): 5, 6, 8, 8,5, 9, 12, 15. Стандартный допуск на отклонение выходного напряжения от номинального значения составляет ±5 %. Номинал выходного напряжения указывается в наименовании микросхемы вместо ХХ, например: ХХ = 05 – означает +5 В, ХХ = 85 – это 8,5 В. В наименовании зарубежных микросхем перед типом прибора присутствует индекс, указывающий на фирму-производитель, например: тА78ХХ – фирма Fairchild, ИА78ХХ – Texas Instruments и т. д. Функциональными аналогами этих стабилизаторов отечественного исполнения являются микросхемы серии КР142ЕНХХ, точность установки выходного напряжения в них составляет от ±2 до ±4 % в зависимости от номинала выходного напряжения и исполнения корпуса. Нагрузочная способность стабилизаторов для различных модификаций равна 1,5 и 2 А. В отечественной маркировке цифра в конце не всегда соответствует значению напряжения стабилизации. Так, стабилизатор с номинальным выходным напряжением +9 В имеет обозначение КР142ЕН8А, а микросхема КР142ЕН5Б на выходе формирует напряжение +6 В. Для надежного определения типа прибора при проведении замены обязательно следует пользоваться справочной литературой.
На принципиальной схеме, показанной на рис. 2.2, представлена базовая схема включения стабилизатора типа 7805. Для ее работы требуется минимум внешних элементов, которыми являются, как правило, конденсаторы фильтров, подключаемых на его входе и выходе. Некоторые фирмы-производители подобных микросхем (что справедливо и для отечественных микросхем серии КР142ЕНХХ) рекомендуют устанавливать на входе дополнительный керамический конденсатор емкостью 0,33-2,2 мкФ. Физическое подключение данного конденсатора рекомендуется производить в непосредственной близости от входа стабилизатора. Это необходимо учитывать, когда микросхема стабилизатора соединена с выходом выпрямителя достаточно длинными проводниками. Керамический конденсатор устраняет генерацию, возникающую в стабилизаторе под влиянием паразитных индуктивностей и емкостей проводников печатного монтажа. Паразитный колебательный процесс возбуждается в момент скачкообразного изменения напряжения на входе стабилизатора. Амплитуда колебаний может превышать уровень максимально допустимого входного напряжения, что выведет из строя выходной мощный транзистор стабилизатора. Установка керамического конденсатора изменит характеристики контура распределенных реактивных элементов, нарушит условия возникновения генерации и входное напряжение будет нарастать плавно.
2.4.2. ШИМ регулятор
Преобразователь импульсов, действующий по принципу модуляции их ширины, является одним из основных каскадов импульсного источника питания. Принцип работы источника состоит в том, что от ШИМ регулятора зависит поступление всей энергии во вторичные цепи питания. Правильность же его работы определяют параметры стабилизации вторичных напряжений. Выше был описан (см. главу 1) общий принцип широтно-импульсной модуляции и его использование в импульсных источниках вторичного электропитания. В данном разделе будет рассмотрено практическое воплощение этого принципа на примере специального каскада, предназначенного для управления работой источника питания в компьютерах ATX форм-фактора.
На принципиальной схеме, приведенной на рис. 2.2, непосредственно к каскаду ШИМ преобразователя относятся узлы, построенные на следующих активных элементах:
• микросхема IC1 типа TL494 – ШИМ преобразователь. Цепи пассивных элементов, подключенные к микросхеме, задают динамические параметры ее работы, а также являются составными частями датчиков контроля уровней вторичных напряжений;
• группа элементов на транзисторах Q7, Q8 и трансформаторе T2 образует каскад согласования уровня и мощности импульсных сигналов между выходом ШИМ преобразователя и входными цепями усилителя мощности;
• узел на транзисторах Q1, Q2, Q4 – Q6 установлен для ШИМ регулятора с целью получения сигналов о неконтролируемом возрастании или понижении уровней вторичного напряжения; он используется также для защиты вторичных цепей.
Все основные преобразования ШИМ сигналов, а также их формирование осуществляется модулятором, выполненным на микросхеме типа TL494. Существует два типа корпусов, в которых выпускается данная микросхема. В источниках питания, как правило, используется пластиковый корпус DIP, имеющий 16 выводов. Полное наименование микросхемы в таком корпусе – TL494CN. Обозначение относится к микросхеме производства фирмы Texas Instruments. Функциональное назначение выводов микросхемы приведено в табл. 2.3. Соответствующие аналоги этой микросхемы выпускают и некоторые другие фирмы, причем каждая из них присваивает свое фирменное обозначение. Приведем примеры: фирма FUJITSU – MB3759, фирма SAMSUNG – KA7500, фирма FAIRCHILD – ma494, микросхема российского производства – КР1114ЕУ4, фирма SHARP – IP3MO2. Эта микросхема предназначена специально для построения ШИМ узлов. В корпусе микросхемы TL494CN заключены все необходимые каскады.
Таблица 2.3. Функциональное назначение выводов микросхемы TL494CN
Функциональная схема интегрального ШИМ преобразователя типа TL494 изображена на рис. 2.7.
Рис. 2.7. Функциональная схема интегрального ШИМ преобразователя типа TL494
Элементы, изображенные на функциональной схеме, имеют следующие наименования и назначение:
• на элементах, входящих в состав узла под общим названием «Генератор», собран основной каскад генератора пилообразного напряжения, временные характеристики колебаний которого задаются внешними элементами, подключаемыми к выводам 5 и 6;
• источник опорного напряжения предназначен для формирования стабильного напряжения с номинальным значением +5 В, используемого для работы каскадов сравнения и выработки напряжения ошибки. Точность источника опорного напряжения находится в пределах ±5 %;
• элемент DA1 – компаратор «мертвой зоны», временного интервала между выходными импульсами;
• элемент DA2 – компаратор сравнения сигналов рассогласования и пилообразного напряжения – ШИМ компаратор;
• операционные усилители DA3 и DA4 – схемы выработки сигналов рассогласования;
• элементы с номерами DD1 – DD6 относятся к технике цифровой автоматики и выполняют логическую обработку сигнала, поступающего от ШИМ компаратора DA2;
• два транзистора VT1 и VT2 используются для построения усилителей уровня и мощности выходных импульсных последовательностей. Выводы коллекторов и эмиттеров этих транзисторов оставлены ненагруженными для расширения возможностей по их подключению к последующим каскадам.
Операционные усилители сигнала ошибки имеют рабочий диапазон входных напряжений от -0,3 до 2 В. Последнее (наибольшее) значение соответствует Uп – напряжению питания микросхемы. На входе компаратора «мертвой зоны» технологически установлено смещение, обеспечивающее гарантированное наличие минимальной паузы между импульсами управления. Рабочее напряжение питания на микросхеме в диапазоне от 7 до 40 В может быть установлено произвольным. Предельное значение напряжения питания микросхемы и уровень напряжения на коллекторах выходных транзисторов составляет 41 В. Максимальное значение тока коллектора Iк max равно 250 мА, рекомендованный рабочий ток – 200 мА.
Рабочий диапазон частот генератора пилообразного напряжения составляет от 1 до 300 кГц. Конденсатор, подключаемый к выводу 5 микросхемы IC1, может иметь любое значение номинала от 470 пФ до 10 мкФ, резисторы для установки во времязадающей цепи – в пределах 1,8-500 кОм.
Температурный диапазон работы микросхемы типа TL494CN составляет 0-70 °C.
С момента подачи напряжения питания на вывод 12 относительно вывода 7 ШИМ регулятор начинает формирование на выходных контактах (выводы коллекторов и эмиттеров транзисторов VT1 и VT2) импульсных сигналов. Формально для получения на этих выводах последовательностей импульсов никаких сигналов обратной связи не требуется. Но к микросхеме должны быть подключены пассивные элементы, задающие параметры работы генератора и обеспечивающие смещения на входах операционных усилителей. Для наблюдения импульсов на выводах выходных транзисторов в схеме должны быть установлены дополнительные нагрузочные резисторы, определяющие схему их включения.
Рассмотрим схему включения ШИМ преобразователя в системе управления импульсным источником питания, пользуясь обозначениями на принципиальной схеме, приведенными на рис. 2.2, и функциональной схемы – на рис. 2.7.
При подаче напряжения питания на вход импульсного источника на транзисторе Q3 включается автогенераторный вспомогательный источник, который формирует на своих вторичных обмотках два напряжения. Первое предназначено для запитки стабилизатора канала дежурного режима, а второе – для подачи питающего постоянного напряжения на микросхему ШИМ стабилизатора. Обмотка трансформатора T6, с которой снимаются напряжения для питания IC1 и стабилизатора канала дежурного режима (+5VSB), включена во вторичную цепь источника питания. Это означает, что общие проводники этих цепей объединены между собой. Таким образом, питание ШИМ преобразователя производится напряжением, гальванически развязанным от первичной сети питания. Напряжение, подаваемое на вывод 12 микросхемы IC1 от выпрямителя на D9, нестабилизированно и служит для начального запуска этой микросхемы. В зависимости от величины нагрузки канала дежурного режима +5VSB уровень напряжения на вторичной обмотке трансформатора T6, а, следовательно, и питания на IC1/12, будет изменяться в некоторых пределах.