Что это за массы концентрации? Объяснение выглядит очень интригующим. Предполагается, что моря являются участками, в которые попадали большие метеориты на поздней стадии развития Луны. Если это так, то, по всей видимости, под поверхностью морей находятся большие куски метеоритов. Если эти обломки по большей части состоят из железа, они в два раза плотнее, чем прочая материя Луны. Это-то и может вызвать небольшую гравитационную аномалию.
Астрономические объекты, которые столь малы, что гравитационное поле не является для них преобладающим фактором, могут быть неравномерны по форме и совершенно не напоминать сферу. Астероид Эрос — особо выдающийся пример этого, поскольку имеет вид кирпича, а в длину составляет примерно пятнадцать миль.
Это означает, что гравитационное поле в непосредственной близости от астероида сильно варьируется. Однако воздействие гравитации на какое-либо тело очень мало, и, если вы стоите на поверхности Эроса, на вас будут влиять гравитационные силы примерно в тысячу раз меньшие, чем на Земле.
Но и это притяжение возможно лишь в том случае, если вы находитесь на поверхности Эроса в нескольких милях от его центра. Если же вы будете в 1000 миль от центра Эроса (что соответствует 4000 миль от центра Земли), действие Эроса на вас окажется примерно в одну миллиардную меньше, чем ваше притяжение к Земле.
Все сказанное относится к любому астрономическому телу, достаточно малому, чтобы силы гравитации не придали ему сферическую форму. Интенсивность гравитационного взаимодействия между ним и вами так мала, что в астрономических подсчетах ею можно пренебречь. На расстоянии же изменения в притяжении являются столь незначительными, что Эрос и другие объекты подобного рода могут считаться точечными источниками — при условии, что мы находимся непосредственно, или очень близко, к их поверхности.
Даже если мы будем исходить из того, что все астрономические тела являются точечными, все равно остается вопрос о «проблеме трех тел». К примеру, как можно рассчитать движение Луны во Вселенной среди множества объектов, каждый из которых имеет свое гравитационное поле, даже если эти объекты, включая Луну, являются точечными источниками?
К счастью, распределение тел во Вселенной таково, что всегда достаточно брать во внимание только два тела. Когда присутствует третье тело, то оно, как правило, так мало, что его можно проигнорировать, или столь удалено, что первые два тела можно считать относительно него одним точечным объектом. Но, даже игнорируя «проблему трех тел», мы должны решить «проблему двух тел».
Предположим, мы возьмем в рассмотрение Луну и Землю. Эти два тела находятся на расстоянии (в среднем) 237 000 миль друг от друга; если даже увеличить это расстояние в сто раз, то никакого другого тела поблизости не окажется. При первой аппроксимации мы можем предположить, что Луна и Земля одни во Вселенной, и будем рассматривать их в свете «проблемы двух тел».
Когда мы приступим к решению задачи, то сразу обнаружим, что Луна и Земля движутся в паре по связанным эллипсам вокруг центра гравитации системы. Описываемый Землей эллипс так мал, что мы его даже не станем рассматривать (по крайней мере, в этой книге). В этом случае фраза «Луна вращается вокруг Земли» будет правомочна, и нас не поправят даже астрономы.
Только лишь из относительных размеров этих эллипсов можно заключить, что Земля в 81 раз больше по массе, чем Луна.
Система Земля — Луна находится от Солнца в 93 000 000 миль. Поблизости есть и другие тела (Меркурий, Венера и Марс, когда они находятся на той же стороне от Солнца, что и Земля). Солнце, однако, в 1500 раз массивнее, чем все другие планеты, вместе взятые, так что система Земля — Луна выступает относительно Солнца как точечный объект (находящийся в центре тяжести системы Земля — Луна), и этот точечный источник вместе с Солнцем можно рассматривать в свете «проблемы двух тел».
Теперь рассмотрим вращение центра масс системы Земля — Луна вокруг Солнца по эллиптической (не очень сильно отличающейся от круговой) орбите за 365 с четвертью дней. Если быть точным, система Земля — Луна движется вокруг центра гравитации системы Земля — Луна — Солнце, который находится примерно в 300 милях от центра Солнца.
И Земля, и Луна вращаются вокруг своих центров тяжести по 12 раз с небольшим за время, когда Земля совершает один полный оборот вокруг Солнца. Это значит, что орбита вращения центра Луны имеет 12 небольших «волн» (и начинается тринадцатая) при движении вокруг Солнца. Центр Земли также при своем вращении имеет те же 12 с небольшим «волн», но значительно более слабых.
Сравнивая силу воздействия Солнца на Землю при уже известном расстоянии и Луны на Землю, можно определить, что Солнце в 27 000 000 раз массивнее Луны и, таким образом, в 330 000 раз массивнее Земли.
Конечно, на Луну оказывает действие также гравитационное поле утолщения Земли у экватора, а также Венера, Меркурий, Марс, Юпитер и так далее. Интенсивность этих гравитационных взаимодействий постоянно изменяется, поскольку Луна, Земля, Венера и другие тела движутся по своим орбитам на скорости, которая не является постоянной.
Но все эти гравитационные взаимодействия вызывают только небольшие изменения («возмущения») в лунной орбите, и потому можно учитывать в расчетах только два тела. Тем не менее астрономическая точность требует, чтобы были взяты в расчет все взаимодействия. Мне известно, что уравнение, представляющее движение Луны с учетом всех возмущений, занимает большой том, и даже при этом оно может быть только аппроксимацией, хоть и очень близкой. Утверждают, что для Ньютона лишь вывод уравнения для расчета движения Луны вызывал головную боль.
А что можно сказать о других системах планета — спутник? У Юпитера существует двенадцать известных нам спутников, из которых четыре имеют примерный размер Луны. Юпитер сам столь массивен, что его взаимодействие с каждым из спутников может быть рассмотрено как взаимодействие «двух тел».
Если мы знаем расстояние от какого-либо спутника до Юпитера и время его обращения вокруг этой планеты, мы можем сравнить это время оборота со временем, которое занял бы оборот этого спутника вокруг Земли на таком же расстоянии. Спутники вращаются вокруг Юпитера намного быстрее, чем они вращались бы вокруг Земли, и, принимая во внимание уравнение Ньютона, мы можем вычислить интенсивность гравитационного поля Юпитера относительно земного и, следовательно, его массу. Оказывается, Юпитер имеет массу в 318 раз большую, чем Земля.
Более подробные вычисления можно легко сделать для любой планеты со спутником, чьи расстояние от планеты и период вращения могут быть определены.
А что насчет масс самих спутников? Можно определить массу Луны из его воздействия на движение Земли? Увы, но подобное невозможно. Масса Луны столь велика по сравнению с массой Земли, что Луна заставляет Землю заметно раскачиваться. Для любого другого спутника в Солнечной системе это неприменимо. Спутники относительно малы в сравнении со своими планетами, и их воздействие на движения планет незаметно.
Масса каждого спутника Юпитера может быть вычислена исходя из возмущений, которые этот спутник вызывает в орбитах других спутников, а эти вычисления далеко не точны.
Аналогичная неточность возникает и при изучении планет без спутников. До недавнего времени массу Венеры приходилось вычислять из ее влияния на систему Земля — Луна, и самое большее, что можно было сделать, — это определить, что масса Венеры составляет 0,8 массы Земли. Однако благодаря зондам, прошедшим близко к поверхности планеты, и влиянию Венеры на эти зонды было определено, что Венера имеет массу 0,81485 массы Земли.
Как следует из вышеизложенного, все определения масс тел основываются на движениях по орбите и являются относительными. К примеру, в ряде случаев они сводятся к определению соотношения массы данного космического тела с массой Земли.
Но чтобы сделать все эти относительные вычисления достоверными, необходимо точно определить саму массу Земли.
Местом, где это произошло, была Англия; временем, когда это произошло, был 1798 год; человеком, который это сделал, был Генри Кавендиш, а метод заключался в том, что… Нет, немного потерпите.
Несколько лет назад я посетил свой родной университет в штате Колумбия, со студентами которого у меня состоялась довольно интересная беседа. По ее окончании студенты преподнесли мне очень своеобразный подарок.
Это оказалась футболка. Впереди был изображен Исаак Ньютон, чуть ниже жирными буквами выведено его имя. На другой же стороне помещалось легендарное уравнение: f = ma.