Это оказалась футболка. Впереди был изображен Исаак Ньютон, чуть ниже жирными буквами выведено его имя. На другой же стороне помещалось легендарное уравнение: f = ma.
Вы наверняка догадаетесь, что я был очень рад получить футболку и что надеваю ее при любом удобном случае.
Но, надо сказать, у меня гораздо меньше возможностей носить футболку, нежели у подростков. Мой возраст и социальное положение не позволяют носить футболку, не вызвав у окружающих удивление.
Но когда я все же надеваю ее, например по случаю вечеринки, все внимание присутствующих оказывается прикованным ко мне. К счастью, меня это не смущает, поскольку меня больше занимает то, что происходит в моей голове, а не то, что вокруг. К тому же мне немало уверенности придает восхищенный шепот подростков за моей спиной. Должен сказать, это худшая из футболок, что у меня есть. Полгода назад одна из самых красивых девушек «Даблдэй энд компани» подарила мне майку, на которой было написано жирными белыми буквами: АЙЗЕК АЗИМОВ — ГЕНИЙ. Мне стыдно об этом говорить, но у меня не хватило ума, чтобы не появляться в ней на публике. Я всегда полагал, что моя нескромность имеет пределы, но оказалось, что это не так.
Похоже на то, что внимание публики привлекает не портрет Исаака Ньютона (которого, возможно, незнающие считают из-за длинных волос звездой рок-н-ролла), а магическая надпись на спине. Думаю, все пытаются понять смысл этих знаков.
Так почему бы не объяснить эти знаки здесь?
Мысленно бросим мяч. Мяч неподвижен, когда вы только начали движение, но когда мяч покидает вашу руку, он летит на значительной скорости. Во время броска мяч набирает скорость от нуля до того значения, которое вы ему придаете движением своих пальцев. Такое увеличение скорости называется ускорение.
Ускоряя движение, мы должны приложить силу. Без нее движение мяча не ускорилось бы. Без применения силы мяч не может ни ускоряться, ни останавливаться. Чтобы его бросить, нужно приложить силу. Мы можем сделать движения, необходимые при броске, — но если мяч лежит от нас на расстоянии 10 футов, с ним ничего не произойдет. Более того, когда мы бросаем мяч, его движение ускоряется только в том направлении, в котором мы бросаем.
Прикладывая силу, причем к конкретному объекту воздействия, мы можем наблюдать следующее: любой объект можно заставить ускоряться в том — и только в том! — случае, если на него оказывается какое-либо воздействие, причем ускорение всегда будет в направлении действия силы.
Подобные утверждения иногда называют «законами природы», но мне это название кажется слишком претенциозным. Думаю, это можно назвать просто обобщением. Это довольно простое наблюдение, что сила и ускорение направлены в одну сторону.
Но вернемся к мячу. Если мы бросим его с большим усилием, это заставит мяч двигаться быстрее. Изменение скорости во время броска больше. То есть чем больше сила, тем больше ускорение. И снова это довольно простое наблюдение, с которым знакомо все человечество.
Действительно, когда физики начали измерять силу и ускорение с большой степенью точности, они обнаружили, что, если к данному телу приложить вдвое большую силу, тогда и ускорение увеличивается ровно вдвое. (Это не совсем так. Теория относительности Эйнштейна внесла поправки, которые, однако, при обычных обстоятельствах оказывают незначительное влияние, — но эта глава посвящена ньютоновской аппроксимации, и потому здесь я не буду рассматривать поправки Эйнштейна. — Примеч. авт.) Если увеличить силу в n раз, тогда точно в n раз увеличится и ускорение.
Коротко это можно сформулировать так: ускорение прямо пропорционально силе.
Еще короче это соотношение можно записать при помощи математических символов. Пусть ускорение будет обозначено буквой a, а сила — буквой f. Чтобы представить прямую пропорциональность, мы используем знак. Таким образом, мы можем записать:
a ~ f (уравнение 1).
Но продолжим наши эксперименты. Что произойдет, если мы будем бросать различные предметы? Предположим, что мы с некоторым усилием бросаем теннисный мяч. Насколько это возможно, используйте такое же усилие для того, чтобы последовательно бросать бейсбольный мяч, резиновый детский мячик и шар (один их тех, которым любят отягощать себя метатели шара).
Вы легко увидите, что невозможно при той же самой силе заставить бейсбольный мяч двигаться так же быстро, как теннисный. Резиновый мяч будет лететь медленнее, а металлический шар будет вообще трудно сдвинуть с места.
Человечество уже давно заметило, что фиксированная сила ускоряет тяжелый объект в меньшей степени, чем легкий. В самом деле, если вы произведете измерения, то сразу найдете, что x вдвое тяжелее у, если x в три раза тяжелее, чем y, то x ускорится в три раза меньше, чем y, и так далее.
Вы возразите: если бросить перо, то оно, по этой логике, должно полететь куда быстрее, чем бейсбольный мяч, но этого не происходит. Перо быстрее не летит.
Дело в том, что наша рука — не единственное, что действует на перо. На него в противоположном направлении действует сопротивление воздуха. По некоторым причинам, в которые мы не будем вдаваться, эта противодействующая сила в большей степени влияет на относительно легкие предметы, такие, как перо, чем на относительно тяжелые, такие, как бейсбольный мяч. Приходится искать равнодействующую силу — то есть силу, которая получается в результате взаимодействия разных сил.
Еще одно замечание — если мы попытаемся двинуть очень тяжелый предмет по полу, у нас получится очень малое ускорение, возможно, что его вообще не будет. Предмет может вообще не сдвинуться, сколько бы усилий вы ни приложили. На сей раз вам мешает сила трения, которая действует в направлении, противоположном силе, приложенной нами, — и эта сила при прочих равных условиях больше у тяжелых тел.
Короче говоря, реальные явления имеют довольно сложный характер, и вот почему понадобилось два тысячелетия, чтобы после долгих размышлений мудрецов были найдены некоторые общие закономерности. Потребовался исключительный гений, который смог бы отбросить затемняющие картину посторонние явления.
Если мы также отбросим все постороннее, то сможем утверждать, что чем тяжелее объект, тем меньшее ускорение вызовет приложенная к нему фиксированная сила.
Но не будем говорить «тяжелее», поскольку это может вызвать сложности. Давайте использовать термин «масса». При обычных обстоятельствах понятие «более массивное» примерно соответствует тому, что мы считаем «более тяжелым»; «менее массивное» же означает «более легкое».
Чем больше масса тела, тем труднее его ускорить — другими словами, изменить его скорость. Сопротивление изменениям скорости тела называется инерцией. Фактически инерция и масса — различные названия одного и того же свойства. (Покойный ныне И. И. Смит рассматривал свободное от инерции тело, движущееся в космосе со скоростью, близкой к скорости света. Обыкновенная масса без инерции не может двигаться быстрее скорости света, считал он, но масса без инерции может двигаться с любой скоростью, как бы велика она ни была. Это очень интересное утверждение, но если мы глянем правде в глаза, то придется признать, что масса без инерции — это то же, что масса без массы, то есть возникает противоречие в терминах; по крайней мере, мне так кажется. — Примеч. авт.)
Если для данной силы ускорение становится меньше при увеличении массы, мы можем сказать, что ускорение обратно пропорционально массе.
Для того чтобы увидеть, как это может быть, обратимся к математическим соотношениям. Пусть m представляет массу. Введем понятие 1/m. Чем больше m (к примеру, 2, 3, 4, 5 и так далее), тем меньше отношение 1/m (соответственно 1/2, 1/3, 1/4, 1/5 и так далее). Фактически 1/m становится тем меньше, чем больше m, — абсолютно так же ускорение становится меньше при увеличении массы.
Если каждая из двух переменных пропорциональна третьей переменной, то эти две переменных прямо пропорциональны друг другу. Другими словами, если ускорение и 1/m обратно пропорциональны m, то ускорение прямо пропорционально 1/m. Тогда мы можем сказать:
а ~ 1/m (уравнение 2).
Если ускорение прямо пропорционально каждой из двух различных величин, то оно прямо пропорционально произведению этих величин. Другими словами, если а прямо пропорционально f и 1/m (см. уравнения 1 и 2), то оно прямо пропорционально произведению f и 1/m. Таким образом, мы можем сказать, что: