Нет. Как показал предыдущий анализ, даже если генеральные директора все поголовно будут обладать стабильным показателем успеха в 60%, шансы, что в течение заданного пятилетнего периода деятельность конкретного генерального директора отразит это, равны всего 1 к 3! В приложении к 500 компаниям это означало бы, что за последние пять лет около 333 генеральных директоров продемонстрировали уровень деятельности, не отражавший их реальные способности Более того, следует ожидать, что совершенно случайно примерно 1 из 10 генеральных директоров продемонстрирует успех или же неудачу все пять лет подряд. О чем эго говорит? Надежнее судить о людях, основываясь на анализе их способностей, нежели на цифровых показателях. Или же, как выразился Бернулли, «не стоит оценивать людские деяния исходя из результатов»{99}.
Чтобы возражать против закона малых чисел, нужно обладать твердым характером. Потому как каждый может откинуться на спинку кресла и тыкать в итоговую строку отчета в качестве доказательства. Реальная же оценка знаний человека и его истинных навыков требует доверия, размышлений, верных суждений и, собственно, мужества. Сидя на собрании среди коллег, вы не можете вот так вот запросто встать и заявить: «Не увольняйте ее. Просто она оказалась не на том конце ряда Бернулли». И вряд ли вы завоюете друзей, если выскажетесь о самодовольном типе, умудрившемся продать «тойот» больше всех за всю историю существования автомобильных дилеров, в том духе, что, мол, «это все случайная флуктуация». Согласитесь, происходит такое нечасто. Успешные годы руководителей приписываются их исключительным способностям, объясняются дальновидностью. Когда же успеха не наблюдается, мы зачастую предполагаем, что неудачи точно отражают ту самую пропорцию, в которой таланты человека и его способности заполняют сосуд.
Еще одно ошибочное понятие, связанное с законом больших чисел, состоит в следующем: событие произойдет с большей или меньшей вероятностью по той причине, что за последнее время оно происходило или не происходило. Представление о том, что шансы на событие с постоянной вероятностью возрастают или снижаются в зависимости от того, имело ли событие место в недавнем прошлом, называется заблуждением игрока. Предположим, Керрич подбрасывает монету, выпадает 44 орла на 100 бросков, но ведь монета не будет стремиться к решкам, чтобы сравнять их с орлами. Вот что лежит в основе таких идей, как «удача отвернулась от нее» и «ему везет». Так не бывает. Если на то пошло, полоса везения долго не продлится, а вот полоса невезения, к сожалению, совсем не означает скорого возвращения удачи. И все же заблуждение игрока затрагивает гораздо больший круг людей, чем может показаться, даже если и не на уровне сознательном, то на подсознательном уж точно. Люди ждут, что неудача сменятся удачей, либо беспокоятся, что за везением обязательно последует невезение.
Помнится, несколько лет назад во время круиза я наблюдал за одним энергичным толстяком, который в поте лица совал и совал доллары в прорезь игрального автомата — машина едва успевала заглатывать банкноты. Его спутник заметил, что я смотрю на толстяка, и произнес всего два слова: «Ему везет». Хотя меня так и подмывало ответить, что вовсе даже ему и не везет, я пошел дальше. Сделав всего несколько шагов, я замер: вдруг замигали лампочки и что-то зазвенело, причем этот звон вовсе не походил на мелодичные трели, которые раздавались из автомата тех двоих. Затем я услышал звук быстро высыпающихся монет, которые, как мне показалось, сыпались не одну минуту — они резво вылетали из игрального автомата. Теперь я знаю, что современные игральные автоматы запрограммированы, выигрыш зависит от генератора случайных чисел, который и по закону, и по своим настройкам действительно должен генерировать, как трубят об этом в рекламе, случайные числа, так что каждый нажим на ручку игрального автомата не зависит от всех предыдущих. И все же… Скажу только, что заблуждение игрока — большая иллюзия.
Рукопись, в которой Бернулли изложил свою «золотую теорему», вдруг обрывается, хотя выше автор и обещает написать приложение, в котором будут примеры юридического и экономического характера. Похоже, «Бернулли вдруг бросил все, когда увидел число 25 550», написал историк статистики Стивен Штиглер{100}. На самом же деле рукопись Бернулли уже была в печати, когда в августе 1705 г. он умер «от бруцеллеза», дожив до пятидесяти лет. Издатели обратились к Иоганну Бернулли с просьбой закончить рукопись, но Иоганн сказался занятым. Это может выглядеть странным, однако странностей в семействе Бернулли хватало. Если бы пришлось выбрать из всех когда-либо живших математиков человека самого неприятного, можно было бы смело назвать Иоганна Бернулли. В исторических текстах его неоднократно изображали завистливым, тщеславным, обидчивым, упрямым, раздражительным, хвастливым, нечестным, да к тому же еще и изощренным лжецом. Он многого добился в математике, однако известен также и тем, что выгнал своего сына Даниила из Академии наук, когда тот получил награду, за которую боролся сам. А еще тем, что попытался украсть идеи как своего брата, так и Лейбница, что приписал работу по гидродинамике сына Даниила себе, после чего подделал дату публикации, дабы получилось так, будто его печатный труд вышел раньше.
К тому времени, как его попросили завершить труд умершего брата, он уже некоторое время работал в Базеле, переехав из Гронингенского университета в Нидерландах и занимая место профессора не математики, а древнегреческого. Якобу такие перемены в карьере брата показались подозрительными, особенно потому, что по его представлениям Иоганн древнегреческого не знал. Якоб написал Лейбницу о своих подозрениях: Иоганн якобы приехал в Базель, чтобы занять его, Якоба, место. Так оно и случилось: после смерти брата Иоганн получил его место.
Большую часть своей сознательной жизни Иоганн и Якоб не ладили. В своих математических публикациях и письмах они то и дело обменивались оскорбительными выпадами; по отзывам одного из математиков, их переписка «изобиловала такими выражениями, которыми обычно поносят конокрадов»{101}. Таким образом, когда возникла необходимость отредактировать рукопись Якоба посмертно, просьба эта спускалась все ниже и ниже по «цепи питания» и дошла до племянника Якоба, Николаса, сына другого брата, которого тоже звали Николасом. Николасу-младшему в то время исполнилось всего восемнадцать, однако он был одним из учеников Якоба. К сожалению, Николас не был уверен, что справится с задачей, возможно, отчасти потому, что знал о несогласии Лейбница с идеями дяди в отношении применения теории. Поэтому рукопись отлеживалась восемь лет. Наконец, в 1713 г. она была опубликована под названием «Ars conjectandi», или «Искусство предположений». Как и «Мысли» Паскаля, она до сих пор переиздается.
Якоб Бернулли продемонстрировал: с помощью математического анализа можно понять, как неявные вероятности, лежащие в основе естественных систем, отражаются в данных, которые эти системы производят. Что же до вопроса, на который Бернулли не ответил — вопроса о том, как выяснить, основываясь на полученных данных, неявные вероятности событий, — то ответ на него будет найден лишь спустя десятилетия.
Глава 6
ЛОЖНАЯ ПОЛОЖИТЕЛЬНОСТЬ И ПОЛОЖИТЕЛЬНАЯ ЛОЖНОСТЬ
Случай этот произошел в 1970-х: как-то на занятия к профессору, преподававшему психологию в Гарварде, пришел один странного вида студент средних лет. После первых лекций студент счел нужным объяснить, зачем он записался на курс{102}. В моей преподавательской практике были случаи, когда особо воспитанные студенты объясняли, почему бросают курс, однако ни один студент не потрудился сказать, почему он решил ходить ко мне. Наверно поэтому я в мечтах представляю, как студент подходит и говорит: «Меня очень заинтересовал ваш предмет, вы замечательно читаете лекции». Однако у того студента причины были иными. Ему нужна была помощь, так как с ним происходило нечто странное. Жена сказала ему то, о чем он в тот момент как раз думал; в результате она с ним разводится. Коллега по работе во время дружеской посиделки в баре вскользь упомянул о сокращении, и через два дня наш студент пополнил ряды безработных. Он признался: за последнее время с ним не раз и не два случались подобного рода несчастья и, как он назвал их, вызывающие тревогу совпадения.
Поначалу все эти происшествия лишь сбили его с толку. Затем он, как и большинство из нас на его месте, придумал себе некое объяснение с точки зрения общемирового порядка. Которое, однако, резко отличалась от всего того, что наверняка пришло бы в голову каждому из нас: он решил, что участвует в строго засекреченном научном эксперименте. Что эксперимент ставится большой группой ученых под началом известного психолога Б.Ф. Скиннера. И что когда эксперимент закончится, он, участник, прославится, и его назначат на высокий государственный пост. Вот почему, сказал студент, он записался на курс. Он хотел узнать: как, основываясь на множестве накопившихся к тому времени доказательств, проверить свое предположение.