MyBooks.club
Все категории

Шон Кэрролл - Частица на краю Вселенной. Как охота на бозон Хиггса ведет нас к границам нового мира

На сайте mybooks.club вы можете бесплатно читать книги онлайн без регистрации, включая Шон Кэрролл - Частица на краю Вселенной. Как охота на бозон Хиггса ведет нас к границам нового мира. Жанр: Прочая научная литература издательство -,. Доступна полная версия книги с кратким содержанием для предварительного ознакомления, аннотацией (предисловием), рецензиями от других читателей и их экспертным мнением.
Кроме того, на сайте mybooks.club вы найдете множество новинок, которые стоит прочитать.

Название:
Частица на краю Вселенной. Как охота на бозон Хиггса ведет нас к границам нового мира
Издательство:
-
ISBN:
-
Год:
-
Дата добавления:
28 январь 2019
Количество просмотров:
188
Читать онлайн
Шон Кэрролл - Частица на краю Вселенной. Как охота на бозон Хиггса ведет нас к границам нового мира

Шон Кэрролл - Частица на краю Вселенной. Как охота на бозон Хиггса ведет нас к границам нового мира краткое содержание

Шон Кэрролл - Частица на краю Вселенной. Как охота на бозон Хиггса ведет нас к границам нового мира - описание и краткое содержание, автор Шон Кэрролл, читайте бесплатно онлайн на сайте электронной библиотеки mybooks.club
Автор книги, известный американский физик-теоретик и блестящий популяризатор науки, рассказывает о физике элементарных частиц, о последних достижениях ученых в этой области, о грандиозных ускорителях и о самой загадочной частице, прозванной частицей Бога, о которой все слышали, но мало кто действительно понимает ее природу Перевернув последнюю страницу, читатель наконец узнает, почему эта частица так важна и почему на ее поиски и изучение свойств ученые не жалеют ни времени, ни сил, ни денег.Лондонское Королевское научное общество назвало книгу лучшей научно-популярной книгой 2013 года.

Частица на краю Вселенной. Как охота на бозон Хиггса ведет нас к границам нового мира читать онлайн бесплатно

Частица на краю Вселенной. Как охота на бозон Хиггса ведет нас к границам нового мира - читать книгу онлайн бесплатно, автор Шон Кэрролл

Связь между энергией и длиной волны – ключевое понятие в квантовой механике и теории поля. Длина волны – это расстояние между двумя соседними гребнями волны. Когда она мала, гребни прижимаются ближе друг к другу. Чтобы добиться этого, нужно затратить энергию, так что понятно, почему световые пакеты с короткими длинами волн, как, например, у ультрафиолетового света или у рентгеновских лучей, обладают более высокой энергией. Если длина волны велика, как у радиоволн, отдельные кванты света имеют очень низкую энергию. После того как появилась квантовая механика, эта взаимосвязь между длиной волны и энергией была распространена и на массивные частицы. Большая масса подразумевает короткую длину волны, что означает, что частица занимает меньше места. Вот почему электроны, а не протоны или нейтроны, определяют размер атома: они самые легкие из всех частиц атома, поэтому имеют самую большую длину волны, и, следовательно, занимают больше всего места. В некотором смысле это даже объясняет, почему БАК должен быть таким большим. На ускорителе пытаются рассмотреть то, что происходит на очень малых расстояниях, а это значит, что нужно использовать очень маленькие длины волн, следовательно, нам нужны высокоэнергетичные частицы, то есть нам нужен гигантский ускоритель, чтобы заставить их летать как можно быстрее.

Планк не сумел сделать концептуальный скачок и перейти от метода квантования энергии к идее частиц света в буквальном смысле. Он считал введение квантов просто своего рода трюком, который помогает получить правильный ответ, а не фактом реальности. Этот скачок сделал Эйнштейн, который в то время ломал голову над загадочным явлением под названием «фотоэлектрический эффект». Когда вы освещаете металл ярким светом, вы можете выбить из его атомов электроны. Казалось бы, число таких освободившихся электронов зависит от интенсивности света, поскольку если луч света ярче, в металл вкачивается больше энергии. Но выяснилось, что это не совсем так: свет большой длины волны, даже очень яркий, не сумеет даже расшатать электроны, в то время как довольно слабый, зато коротковолновый свет способен вырвать некоторые электроны из атомов. Эйнштейн понял, что фотоэлектрический эффект можно объяснить, если считать, что свет распространяется не в виде непрерывной волны, а в виде отдельных квантов. И это справедливо не только для излучения светящегося нагретого тела. «Высокая интенсивность, но длинноволновое излучение» подразумевает море квантов, каждый из которых обладает слишком малой энергией, чтобы оторвать какие-либо электроны от атомов, а «низкая интенсивность, но короткие волны» означает всего несколько квантов, но в каждом достаточно энергии, чтобы освободить электрон.

Ни Планк, ни Эйнштейн не использовали слово «фотон». Оно было придумано Гилбертом Льюисом в 1920-х годах, а благодаря Артуру Комптону стало популярным. Именно Комптон окончательно убедил людей в том, что свет – это поток частиц, показав, что кванты света обладают и моментом, и энергией.

Статья Эйнштейна по фотоэффекту стала той самой работой, за которую он получил Нобелевскую премию. Она была опубликована в 1905 году, и в том же номере журнала появилась еще одна статья Эйнштейна, в которой он сформулировал специальную теорию относительности. Вот что такое Эйнштейн образца 1905 года: он публикует революционную статью, в которой закладываются основы квантовой механики и за которую ему позже присуждается Нобелевская премия, но она оказывается всего лишь второй по важности из двух его статей, опубликованных в том журнале!

Квантовомеханические следствия

Квантовая механика стала постепенно внедряться в физику в первые десятилетия XX века. Начиная с Планка и Эйнштейна, ученые пытались понять смысл поведения фотонов и атомов, и в тот момент времени, когда они это поняли, надежная ньютоновская картина мира была опрокинута с ног на голову. В последние несколько веков в физике произошло много революций, но на фоне всех остальных две выделяются своей грандиозностью. Первая случилась, когда гениальный Ньютон в 1600-х годах сформулировал свое видение «классической» механики, а вторая – когда группа блестящих ученых сформулировала квантовую механику, заменившую теорию Ньютона.

Основное различие между квантовым и классическим мирами состоит в отношениях между тем, что действительно существует и тем, что мы можем наблюдать. Конечно, любое наше измерение содержит ошибки наших измерительных приборов, но в классической механике мы по крайней мере можем считать, что, изготавливая все более совершенные приборы, мы приближаем измеряемые характеристики к реальным. Квантовая же механика в принципе лишает нас такой надежды. В квантовом мире все, что мы можем увидеть, – лишь малая часть того, что действительно существует.

Вот грубая аналогия, иллюстрирующая суть этого утверждения. Представьте, что у вас есть очень фотогеничная подруга, но, рассматривая ее фотографии, вы замечаете что-то странное: на всех фотографиях она изображена сбоку – то слева, то справа, но никогда – спереди или сзади. Когда вы смотрите на нее в профиль, а затем фотографируете, снимок всегда правильно фиксирует позицию. Но когда вы смотрите на нее прямо спереди, а затем фотографируете, на половине снимков возникает ее левый профиль, а на второй половине – правый. (Аналогия предполагает, что понятие «сделать снимок» эквивалентно понятию «сделать квантовое наблюдение».) Вы можете сделать снимок под любым углом, а затем очень быстро переместиться на 90° и сделать второй снимок, но на фотографиях вы всегда увидите подругу только в профиль. В этом суть квантовой механики – ваша подруга по отношению к вам может находиться в любой позиции, но, когда вы ее фотографируете, на снимке она получается только в одной из двух возможных «профильных» позиций. Это хорошая аналогия для «спина» электрона в квантовой механике. При измерениях направления вращения электрона относительно любой оси вы всегда получите только вращение по часовой стрелке или против часовой стрелки.

Тот же принцип применим и к другим наблюдаемым величинам. В классической механике есть характеристика частицы, называемая «положением», которое мы можем измерить. В квантовой механике такого понятия нет. Вместо этого вводится так называемая «волновая функция» частицы, которая представляет собой набор чисел, показывающих вероятность нахождения частицы в каждом конкретном месте. Тут уже нельзя указать место, «где находится частица на самом деле».

Когда квантовую механику применили к полям, возникла специальная наука – «квантовая теория поля», которая стала основой нашего современного понимания реальности на самом фундаментальном уровне. Согласно квантовой теории поля, наблюдая за полем достаточно пристально, мы увидим, что оно «распадается» на индивидуальные частицы, хотя и само поле реально. (На самом деле поле имеет волновую функцию, описывающую вероятность нахождения его с каким-либо определенным значением в каждой точке пространства.) В реальной жизни такое тоже происходит: если смотреть на экран телевизора или монитор компьютера издалека, кажется, что на них отображается гладкая картинка, но при ближайшем рассмотрении видно, что на самом деле экраны – это матрицы, состоящие из крошечных пикселей.

Квантовая теория поля объясняет и феномен возникновения виртуальных частиц, в том числе партонов (кварков и глюонов) внутри протонов, которые играют такую важную роль в столкновениях на БАКе. Так же как мы никогда не сможем достаточно точно определить положение индивидуальной частицы, мы никогда не сможем совершенно точно определить конфигурацию поля. Если мы посмотрим на него достаточно пристально, то увидим, что в зависимости от локальных условий частицы появляются и исчезают в пустом пространстве. Виртуальные частицы – прямое следствие неопределенности, присущей квантовым измерениям.

Поколениям студентов-физиков задавался каверзный вопрос: «Из чего в действительности состоит материя – из частиц или волн»? Зачастую студенты, даже пройдя многолетний курс обучения, так и не находят ответ. На самом деле ответ таков: материя состоит из волн (квантовых полей), но когда мы смотрим на них достаточно внимательно, то видим частицы. Если бы наше зрение было столь же острым, как у лягушек, этот факт для нас, возможно, был бы более очевидным.

Фермионные поля

Итак, свет – это волны, рябь, распространяющаяся в электромагнитном поле, пронизывающем пространство. Если мы привлечем к этому описанию еще и квантовую механику, то придем к квантовой теории поля, которая утверждает, что при внимательном рассмотрении электромагнитного поля мы увидим, что оно состоит из отдельных фотонов. Та же логика применима и для гравитации: поле тяжести – тоже поле, в нем есть колебания – гравитационные волны, которые перемещаются в пространстве со скоростью света, а если посмотреть на такую волну достаточно пристально, видно, что она представляет собой поток безмассовых частиц, «гравитонов». Гравитация слишком слаба, чтобы мы смогли обнаружить отдельные гравитоны, но основные принципы квантовой механики говорят, что гравитоны должны существовать. Подобным же образом сильное ядерное взаимодействие осуществляется через поле, которое мы наблюдаем в виде частиц, называемых «глюонами», а слабое ядерное взаимодействие – через поле, носители которого – W– и Z-бозоны.


Шон Кэрролл читать все книги автора по порядку

Шон Кэрролл - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mybooks.club.


Частица на краю Вселенной. Как охота на бозон Хиггса ведет нас к границам нового мира отзывы

Отзывы читателей о книге Частица на краю Вселенной. Как охота на бозон Хиггса ведет нас к границам нового мира, автор: Шон Кэрролл. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.