MyBooks.club
Все категории

Тибо Дамур - Мир по Эйнштейну. От теории относительности до теории струн

На сайте mybooks.club вы можете бесплатно читать книги онлайн без регистрации, включая Тибо Дамур - Мир по Эйнштейну. От теории относительности до теории струн. Жанр: Прочая научная литература издательство -,. Доступна полная версия книги с кратким содержанием для предварительного ознакомления, аннотацией (предисловием), рецензиями от других читателей и их экспертным мнением.
Кроме того, на сайте mybooks.club вы найдете множество новинок, которые стоит прочитать.

Название:
Мир по Эйнштейну. От теории относительности до теории струн
Автор
Издательство:
-
ISBN:
-
Год:
-
Дата добавления:
28 январь 2019
Количество просмотров:
212
Читать онлайн
Тибо Дамур - Мир по Эйнштейну. От теории относительности до теории струн

Тибо Дамур - Мир по Эйнштейну. От теории относительности до теории струн краткое содержание

Тибо Дамур - Мир по Эйнштейну. От теории относительности до теории струн - описание и краткое содержание, автор Тибо Дамур, читайте бесплатно онлайн на сайте электронной библиотеки mybooks.club
Как зарождалась теория относительности? Как повлияли революционные идеи Эйнштейна на представления о пространстве и времени, на науку и технику? Каково их место и значение в сегодняшней науке? Книга дает читателю возможность проникнуть в мир Эйнштейна, разделить те особые моменты, когда ему удавалось приподнимать краешек большой завесы, постигая скрытые механизмы Вселенной. Автор шаг за шагом скрупулезно, но занимательно и доступно рассказывает об истоках и формировании идей Эйнштейна, показывает их борьбу с устоявшимися представлениями, непростой путь внедрения этих идей в головы физиков и философов и значение для нашего времени.

Мир по Эйнштейну. От теории относительности до теории струн читать онлайн бесплатно

Мир по Эйнштейну. От теории относительности до теории струн - читать книгу онлайн бесплатно, автор Тибо Дамур

Однако в 1876 г. было обнаружено, что некоторые твердые тела имели значительно меньшую удельную теплоемкость, чем 6 калорий на один градус. Это, в частности, относилось к бору, кремнию и алмазу (или графиту, который так же, как и алмаз, состоит из атомов углерода). В 1875 г. Вебер значительно прояснил данный вопрос, показав, что эти три исключения «возвращаются в общий ряд» при высоких температурах. Он экспериментально установил, что удельная теплоемкость зависит от температуры тела и, когда температура становится достаточно большой, приближается к тому самому простому универсальному значению, которое указывали Дюлонг и Пти. Тем не менее оставалось непонятным, почему при уменьшении температуры удельная теплоемкость этих трех материалов становится гораздо меньше, чем 6 калорий на один градус, предсказанных на основании «классической» статистической физики. [Здесь под классической подразумевается физика в том виде, как она виделась до квантовой революции.] В особенности это касалось алмаза, теплоемкость которого принимала значение порядка 1,4 уже при обычных температурах окружающей среды. Иными словами, речь шла о новом явлении, возникающем не только при очень низких температурах.

В ноябре 1906 г. Эйнштейн понял, что идея квантования энергии колебаний механического осциллятора, которую он предложил в марте, служит ключом к решению указанной проблемы. Основная физическая причина состояла в следующем. Согласно Больцману, теплота твердого тела представлялась как энергия колебаний его атомов около положения равновесия. Точный расчет, выполненный Больцманом, предполагал, что эта колебательная энергия может непрерывно меняться от нуля до бесконечности. Из этого он заключал, что энергия вибрации при некоторой температуре T должна быть пропорциональна абсолютной величине T. Эйнштейн воспроизвел те же расчеты, но наложил дополнительное требование – энергия колебания каждого атома, осциллирующего с частотой f, должна принимать только квантованные значения 0, hf, 2hf, 3hf… Тогда он обнаружил, что удельная теплоемкость, равная нулю при очень низких температурах, постепенно возрастает и в конечном счете принимает значение, предсказанное Больцманом, в тот момент, когда энергия теплового движения атомов становится значительно больше чем E = hf. Интуитивно можно понять этот результат Эйнштейна, представляя теплоту окружающего воздуха как силу воздействия, а каждый атом – ребенком на качелях. Если амплитуда колебаний качелей не может непрерывно возрастать от нуля, а может лишь «перепрыгивать» с нулевой амплитуды на первую ненулевую амплитуду «возбуждения», затем на вторую, еще более высокую, и т. д., то слишком слабая сила воздействия будет недостаточна, чтобы совершить первый перескок, и ребенок останется в самом нижнем энергетическом состоянии, т. е. с нулевой энергией возбуждения{123}.

Затем Эйнштейн сравнил свои предположения с экспериментальными результатами Вебера и др. и обнаружил, что простая математическая формула, которую он вывел для удельной теплоемкости твердого тела, прекрасно описывала экспериментальные данные{124}. Тот факт, что алмаз ведет себя по-особому при обычных температурах, исходя из квантовых рассуждений, объясняется просто тем, что алмаз обладает высокой твердостью. Дорогие читатели, я надеюсь, что отныне, прикоснувшись к драгоценному камню и почувствовав, сколько тепла нужно для его нагрева, вы будете вспоминать, что это является повседневным подтверждением предложенной Эйнштейном в 1906 г. идеи о квантовании колебательной энергии всех материальных осцилляторов!

Идея, ведущая к лазеру

С 1905 по 1911 г. Эйнштейну удавалось весьма плодотворно совмещать несколько независимых направлений исследования: теорию относительности; беспорядочное (или броуновское) движение, связанное с теплотой; квантовые явления; а также обобщение теории относительности в условиях присутствия силы тяжести. Однако в 1911–1916 гг. он сосредоточивает почти всю свою энергию на том, что впоследствии получит название общей теории относительности. Хотя примерно в 1911 г. Эйнштейн уже понимал, что его принцип эквивалентности (см. главу 3), скорее всего, является ключом к абсолютно новому разделу физики, он так долго безуспешно пытался понять природу квантов, что был счастлив хоть на какое-то время отвлечься от исследований этого направления. Его разочарование в проблеме интерпретации явлений квантовой дискретности можно почувствовать, читая то, что он пишет Микеле Бессо в мае 1911 г.:

«Меня больше не интересует вопрос, существуют эти кванты на самом деле или нет. Я также не пытаюсь более понять их строение, ибо знаю уже, что мой мозг не в состоянии двигаться в этом направлении. Но я тем не менее пытаюсь внимательно исследовать все возможные последствия этого явления, чтобы понять, каково поле применения концепции квантов».

Основная проблема Эйнштейна и всех тех, кого интересовали квантовые явления, заключалась в серьезном логическом противоречии между разными предположениями, которые требовалось принять для объяснения всех наблюдаемых фактов. Например, эксперименты по интерференции света объяснялись посредством волнового описания, тогда как фотоэлектрический эффект благодаря Эйнштейну можно было понять, предполагая, что свет – это совокупность почти независимых корпускул. Можно было бы наивно надеяться (как надеялись Планк и Лоренц), что свет «на самом деле» есть волна и что корпускулярные аспекты являются лишь какими-то артефактами, возникающими при взаимодействии света и материи. Но, используя связь между энтропией и вероятностью, Эйнштейн показал в 1909 г., что флуктуации энергии излучения черного тела в единице объема определяются суммой двух разных вкладов: один из них можно было понять, интерпретируя свет как случайную суперпозицию непрерывных волн, а другой можно было объяснить, только предполагая, что свет – это совокупность независимых локализованных частиц. Затем Эйнштейн писал:

«Я думаю, что следующий этап развития теоретической физики даст нам теорию света, которую можно будет трактовать как своего рода слияние волновой теории и теории излучения [частиц]».

Несмотря на настойчивые попытки с 1909 по 1911 г., Эйнштейн не смог найти ясного теоретического обоснования, позволяющего описать «смешивание» волновых и корпускулярных аспектов поведения света. Отсюда и проистекает его разочарование, выраженное в письме верному другу, Микеле Бессо, в 1911 г.

В 1916 г., чтобы «отдохнуть» после титанической работы, проделанной при построении общей теории относительности (работы, которой он был занят последние годы и которая была, наконец, успешно завершена), Эйнштейн снова возвращается к своей «абсолютно революционной» идее о квантовой природе света и получает несколько результатов, имеющих фундаментальное значение для физики XX в. Его отправной точкой была идея объединения концепции световых квантов с идеей Нильса Бора о квантовании энергии атома.

В 1913 г. Нильс Бор обобщил идею Эйнштейна (1906 г.), согласно которой энергия «осциллятора», т. е. прикрепленного к пружине груза, может принимать лишь дискретные значения 0, hf, 2hf, …, где f – частота колебания. На основании этого Нильс Бор выдвигает смелое предположение, что энергия любой системы атомов не может принимать значения вне определенного дискретного ряда: E0, E1, E2 Затем он допускает, что свет, излучаемый атомом, может иметь лишь определенные частоты (так называемые «частоты перехода»), связанные с разницей между двумя допустимыми энергиями, своего рода обобщением уравнения Планка – Эйнштейна: например, hf10 = E1 − E0 определяет частоту для излучения, ассоциированного с «квантовым переходом», в котором атом «переходит» из начального состояния с энергией E1 в конечное состояние с энергией E0. И, наконец, наиболее инновационный аспект работы Бора заключается в том, что он постулирует новый принцип для определения дискретного набора возможных энергий. В простейшем случае атома водорода (один электрон, движущийся по орбите вокруг протона) его новый принцип заключается в требовании, чтобы «действие» орбитального (кругового) движения электрона, а именно, произведение импульса электрона p = mv на длину его круговой орбиты равнялось произведению некоторого целого числа на знаменитую постоянную Планка h.


Тибо Дамур читать все книги автора по порядку

Тибо Дамур - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mybooks.club.


Мир по Эйнштейну. От теории относительности до теории струн отзывы

Отзывы читателей о книге Мир по Эйнштейну. От теории относительности до теории струн, автор: Тибо Дамур. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.