Таким образом, во второй статье, посвященной «квантовой теории идеального газа», завершенной в декабре 1924 г., Эйнштейн после объяснения термодинамических причин необходимости ассоциировать «процесс излучения c газом» частиц материи прямо упоминает «весьма примечательное» утверждение Луи де Бройля и далее выявляет необходимые волновые свойства, связанные с частицей материи. Это суть (a posteriori) естественное обобщение результатов Эйнштейна, касающихся световых квантов. Световую волну, обладающую частотой f, а следовательно, периодом колебания T = 1/f и длиной{132} L = cT, Эйнштейн связывает с частицей, обладающей энергией E = hf = h/T и несущей импульс p = hf/c = h/L. Что касается Луи де Бройля, то он, в свою очередь, предложил ассоциировать с любой частицей, обладающей энергией E и импульсом p, волну с периодом T и длиной L так, что выполняются условия{133} E = h/T и p = h/L.
Этой работой, написанной в декабре 1924 г., заканчивается список тех действительно гениальных достижений Эйнштейна, которые заложили основу трех величайших научных теорий – специальной теории относительности, общей теории относительности и квантовой теории – и тем самым определили суть развития физики XX в. Эйнштейн привнес также другие важные научные идеи (одни из которых начинают раскрываться лишь сейчас, а другие до сих пор остаются неосознанными), но стоит признать, что с 1925 г. он перестал быть центральной фигурой мировой теоретической физики. Тем не менее мы еще увидим скрытую важность его исследований, которыми он занимался остаток жизни.
Меня не сильно радуют чудесные открытия последнего времени, поскольку я не вижу, чтобы они хоть как-то помогали мне разбираться с фундаментальными вопросами. Я чувствую себя ребенком, который никак не может выучить алфавит, хотя, как ни странно, я все еще не теряю надежду. В конце концов, мы имеем дело не с дамой приятной во всех отношениях, а с настоящим Сфинксом!
– Эйнштейн, письмо Максу фон Лауэ, 23 марта 1934 г.
Берлин, Германия, начало 1926 г.
В этот день в начале 1926 г. молодой Вернер Гейзенберг, входя в зал физических семинаров Берлинского университета, сильно волновался{134}. Ему было всего 24 года, когда его пригласили прочитать лекцию на тему недавно возникшей «новой квантовой механики». В последний раз лихорадочно просматривая свои записи, он видел, как весь цвет мирового физического сообщества рассаживается в первом ряду: Макс Планк, Вальтер Нернст, Макс фон Лауэ и др. Лица этих ученых, известных своими фундаментальными открытиями, были прямо-таки воплощением серьезности и строгой сосредоточенности германской академической жизни. Когда лекция уже должна была начаться, появился тот, кто вызывал у Гейзенберга наибольшее восхищение, работами которого он любовался с юношеского возраста, когда впервые открыл для себя общую теорию относительности в книге «Пространство, Время, Материя»{135}, и письма которого иногда зачитывал его профессор и научный руководитель в Мюнхене Арнольд Зоммерфельд в качестве иллюстраций к своему курсу. Альберт Эйнштейн вошел в зал и занял место в первом ряду, адресовав Гейзенбергу легкую улыбку, отчасти извиняясь за свое опоздание, отчасти ободряя молодого человека.
Набравшись уверенности, Гейзенберг приступил к описанию физических концепций и математического аппарата новой квантовой теории. В действительности за последние несколько месяцев с необычайной быстротой был разработан практически новый математический формализм, который, как ожидалось, должен был прийти на смену «старой» теории квантов, а точнее, на смену тому разрозненному набору противоречивых идей, появившихся между 1900 и 1924 гг. в результате попыток объяснить квантовую дискретность (существование этой дискретности становилось все более очевидным из анализа различных физических явлений). Открытие, положившее начало теории квантов, – явная структура излучения черного тела – было сделано здесь же, в Берлине, благодаря исключительно точным измерениям Отто Люммера, Эрнста Принсгейма, Генриха Рубенса и Фердинанда Курльбаума, а также благодаря теоретическому «жесту отчаяния» Макса Планка. Но, конечно, больше всего показывали необходимость глубокого пересмотра физических основ ряд посвященных квантам работ Эйнштейна, выпущенных в период между 1905 г. и декабрем 1924 г. К тому же начиная с 1913 г. смелые теории Нильса Бора ясно говорили о том, как можно применять квантовые идеи в атомной физике.
Новый квантовый формализм, о котором рассказывал Гейзенберг, возник из идей Бора относительно структуры атомов и некоторых концепций, предложенных Эйнштейном в 1916 г. в связи с взаимодействием между атомом и электромагнитным излучением. Среди прочего Эйнштейн ввел коэффициенты A, измеряющие вероятность (в единицу времени), с которой атом, изначально находящийся в заданном (квантовом) «состоянии», может совершить «квантовый переход» в другое «состояние» с более низкой энергией с испусканием в произвольный момент времени и в произвольном направлении кванта света{136}. В исследование физики квантовых переходов Гейзенберга вовлекли его научный руководитель в Мюнхене Арнольд Зоммерфельд, а затем Макс Борн в Геттингене. В октябре 1923 г., после защиты диссертации в возрасте 22 лет, он стал ассистентом Борна и в 1923 и 1924 гг. работал под его руководством, изучая основные идеи и методы. В частности, он освоил использование новых коэффициентов a наряду с эйнштейновскими коэффициентами А, связанными с квантовыми переходами между двумя состояниями атома. Грубо говоря, новые коэффициенты а, называемые «амплитудами квантовых переходов»{137}, были таковы, что их квадраты равнялись эйнштейновским коэффициентам А.
Основная идея, которая легла в основу новой квантовой теории, пришла Гейзенбергу в начале июня 1925 г., когда он поправлялся после обострения сенной лихорадки, пребывая на острове Гельголанд на севере Германии. Идея состояла в замене обычного понятия непрерывной траектории, описывающей возможное движение электрона{138} в атоме, набором амплитуд а, связанных с переходами между возможными квантовыми состояниями атома. Каждая амплитуда перехода определяется двумя числами: числом, фиксирующим начальное состояние энергии из дискретного набора возможных квантовых состояний атома, и числом, фиксирующим конечное состояние. Полный набор амплитуд, таким образом, аналогичен шахматной доске или таблице умножения{139}, каждая элементарная ячейка которой задается двумя числами: координатами по «горизонтали» и по «вертикали».
Пока Гейзенберг объяснял мотивы, которые привели его к идее замены описания посредством непрерывных траекторий электрона в атоме на такие таблицы амплитуд переходов, он с беспокойством поглядывал в сторону Эйнштейна, пытаясь понять его реакцию на эти «колдовские таблицы умножения»{140}. Хотя ему и не удалось убедить Эйнштейна, его явно удалось заинтересовать, в особенности когда в конце выступления Гейзенберг заметил, что новые «правила умножения» для таблиц амплитуд, введенных им и развитых совместно с Максом Борном и Паскуалем Йорданом, позволили воспроизвести результат Эйнштейна, говоривший, что флуктуации энергии излучения, заключенного в некотором подобъеме, состоят из двух отдельных членов: первый связан с волновым характером излучения, а второй – с его корпускулярным характером{141}. Этот результат, заключил Гейзенберг, показывает, что новый квантовый формализм способен описывать одновременно как волновые, так и корпускулярный аспекты непрерывных полей (таких как электромагнитное поле).
После семинара Эйнштейн подошел поздравить Гейзенберга с его выдающимися результатами и пригласил составить ему компанию на пути домой, чтобы подробнее обсудить нововведения, лежащие в основе нового формализма. По возвращении домой Эйнштейн попросил его еще раз уточнить физическую мотивацию, ведущую к идее замены непрерывных траекторий бесконечной таблицей амплитуд переходов.
Послушаем ключевую часть их диалога, воспроизведенную впоследствии самим Гейзенбергом{142}: