Создав сухую кожу с роговым покрытием, мы сводим к минимуму потери влаги: организм становится практически независимым от внешних источников воды (как одетые в «пустынные скафандры» герои фантастического романа «Дюна»). Однако за удобство надо платить.
Во-первых, необходимо перестроить выделительную систему. Почки амфибий функционально не отличаются от рыбьих и предназначены для выведения из организма избытка воды (которую тот постоянно «насасывает» за счет осмоса из гипотонической внешней среды). Проблема удаления конечного продукта белкового обмена – весьма токсичной мочевины CO(NH2)2 – решается в этом случае элементарно: ее просто растворяют в водяном потоке, который так и так постоянно «течет сквозь организм». Иное дело – когда мы начинаем экономить воду, потребляя ее по минимуму; легко создать канализацию в населенном пункте, стоящем на реке, а что делать, если в твоем распоряжении лишь артезианский колодец? Тогда «почки выведения» необходимо заменить на «почки сбережения», призванные выводить во внешнюю среду как можно меньше воды. При этом приходится менять конечный продукт белкового обмена с мочевины на менее токсичную мочевую кислоту – а этот дополнительный «технологический цикл» весьма энергоемок[52].
Во-вторых (и это даже более важно), сухая, лишенная желез кожа создает большие трудности с терморегуляцией – а при жизни на суше, где обычны резкие температурные перепады, эта проблема одна из важнейших. При голых, ороговевших покровах равно затруднены и теплоизоляция (в холод), и теплосброс (в жару) – потому для этой эволюционной линии путь к достижению гомойотермии (поддержанию постоянной, независимой от внешней среды температуры тела) если и не закрыт полностью, то очень сильно затруднен.
Если же мы решим не гнаться за экономией воды и оставим кожу железистой, не ороговевшей, то перед нами откроется множество новых возможностей. Эти кожные железы можно преобразовать в самые разнообразные структуры. Можно превратить их в волоски, выполняющие осязательные функции, а сделав эти волоски достаточно густыми, создать теплоизолирующий покров – шерсть. Можно превратить их дополнительный орган выделения – потовые железы, которые являются еще и терморегулятором (пот, испаряясь, охлаждает поверхность тела); можно, наконец, изменить состав их выделений, превратив эти железы в млечные, и выкармливать с их помощью детенышей. Как легко видеть, в этой эволюционной линии, с ее терморегуляторными возможностями, появление гомойотермии просто-таки напрашивается – да так оно и было на самом деле. Правда, по степени зависимости от источников воды эти существа будут не слишком превосходить амфибий – но ведь за всё в этом мире приходится платить... А с другой стороны – раз уж внутренняя среда нашего организма все равно будет существовать как бы в постоянном водяном токе, нет нужды радикально перестраивать почки на «водосберегающую технологию» и возиться со сменой конечного продукта азотного обмена!
Что же это за «две эволюционные линии»? Традиционный взгляд на эволюцию рептилий – он и поныне отражен во многих учебниках – предполагает, что от каких-то антракозавров (здесь часто поминают сеймурию, имевшую уже рептилийное строение челюсти и грудной клетки, пригодной для реберного дыхания, но еще не расставшуюся с водой – личинки ее так и оставались «головастиками» с наружными жабрами) происходит некий гипотетический «общий предок пресмыкающихся», который обладает уже всем набором рептилийных признаков (водонепроницаемой кожей, почками сбережения и т.д.). От него-то и берут начало основные эволюционные ветви этого класса – анапсиды, синапсиды диапсиды и эвриапсиды; этим группам зачастую придают статус подклассов. Они выделены на основе того, каким способом в каждом из них трансформировался исходный стегальный (крышевидный) череп лабиритодонтов (рисунок 38). У анапсид (сюда относятся черепахи и ряд вымерших групп, например, парейазавры) сохраняется исходный тип черепа – массивный, лишенный облегчающих конструкцию отверстий. У синапсид – «зверообразных ящеров» , чьи зубы были дифференцированы по форме и функциям (пеликозавров и более продвинутых терапсид, которых традиционно считают предками млекопитающих) возникает одно височное окно, от краев которого отходят челюстные мышцы, и возникает единственная скуловая дуга. У диапсид же височных окон возникает два, и соответственно, две скуловых дуги – верхняя и нижняя; к этой группе принадлежат большинство рептилий, как современных (ящерицы со змеями, гаттерии и крокодилы), так и вымерших (динозавры, птерозавры). К эвриапсидам относят несколько вымерших морских групп (ихтиозавров, плезиозавров и родственных им нотозавров и плакодонтов); их черепа имеют единственное височное окно, но образуется оно иным образом, чем у синапсид[53]. Необходимо заметить, что черепа млекопитающих и птиц могут быть отнесены к, соответственно, синапсидному и диапсидному типам – что отражает происхождение этих высших тетрапод.
РИСУНОК 38. (а) – Родословное древо рептилий (в основании соответствующих ветвей – схематически изображенные типы черепа); (б) – происхождение четырех типов черепа.
Однако еще в середине прошлого века Т. Гексли, друг и сподвижник Ч. Дарвина, провел анатомическое сравнение четырех классов тетрапод, дабы установить – кто чьим предком является. Глубокое сходство птиц и рептилий уже в те времена не вызывало особых сомнений; когда говорят, что «птицы – всего лишь продвинутая и сильно специализированная группа рептилий», это, в общем и целом, соответствует истине. Гексли, однако, обратил внимание и на куда менее очевидное, но весьма существенное сходство млекопитающих (маммалий) с амфибиями. Сходство это он видел в строении кожи – мягкой и богатой железами, почек, выделяющих мочевину (у рептилий с птицами почки выделяют мочевую кислоту), и в наличии двух затылочных мыщелков, которыми череп сочленяется с позвоночником (у рептилий с птицами – один). Самыми серьезными, однако, Гексли счел различия в строении кровеносной системы: у амфибий имеются две дуги аорты – правая и левая, у рептилий и птиц сохраняется только правая дуга, а у млекопитающих – только левая. То есть – «вывести» маммальную кровеносную систему из рептилийной (где левая дуга уже редуцирована) принципиально невозможно. На этом основании он заключил, что предками млекопитающих не могут быть рептилии – по крайней мере, ныне живущие, – и маммалии должны вести свое происхождение прямо от амфибий.
Так вот, по наиболее современным представлениям (они, как часто бывает в науке, могут считаться развитием на новом уровне взглядов Гексли), в нескольких (минимум – в двух) эволюционных линиях амфибий независимо выработался синдром[54]рептилийных признаков и был достигнут рептилийный уровень организации. То есть «рептилии» – это категория не вертикальной, а горизонтальной классификации; это не таксон, члены которого связанны единством происхождения, а града – уровень организации, достигаемый тетраподами при утере ими облигатной связи с водой (рисунок 39). Существование двух независимых эволюционных ветвей амниот – тероморфной (от греческого «терион» – зверь) и завроморфной (от «заурос» – ящер), разошедшихся еще на уровне амфибий и венчаемых: первая – млекопитающими, а вторая – птицами и динозаврами, сейчас практически общепризнано[55]. Собственно говоря, вся трехсотмиллионолетняя история наземных тетрапод – это история состязания тероморфов с завроморфами, где эволюционный успех сопутствовал то одним, то другим.
РИСУНОК 39. Обобщенные схемы филогении тетрапод: традиционная (а) и современная (б)
Первыми такого успеха добились тероморфы. Появившиеся еще в позднем карбоне пеликозавры – удивительные создания, многие из которых имели «парус» из остистых отростков позвонков (рисунок 40, а) – составляли в ранней перми 70% всех амниот. Мощные клыки и непропорционально большая голова свидетельствуют о том, что пеликозавры были изначально ориентированы на питание крупной добычей; они были первыми хищными (в смысле – плотоядными, а не насекомоядными) наземными существами. Тем интереснее то обстоятельство, что многие пеликозавры переходят к растительноядности – первый опыт фитофагии среди наземных позвоночных! Последнее – чрезвычайно важно, ибо дефицит потребителей растительной массы в континентальных экосистемах должен был к тому времени стать просто угрожающим.
Дело в том, что сейчас основными фитофагами на суше являются насекомые, но первоначально они, как мы помним из предыдущей главы, только «снимали сливки» – потребляли одни высококалорийные генеративные части растений (пыльцу и семезачатки). В перми насекомые освоили питание соками растений, высасывая их при помощи хоботка из проводящих пучков (цикады и родственные им формы из отряда полужесткокрылых), а также древесиной, уже подвергшейся первичному грибному разложению (жуки), однако питаться низкокалорийными живыми вегетативными тканями растений они стали лишь в мезозое. В карбоне (и даже еще раньше, в девоне) существовали другие потребители этого – прямо скажем, не особо привлекательного – ресурса: крупные двупарноногие многоножки; именно ими, как считают, оставлены погрызы на ископаемых листьях из палеозойских отложений. Пик разнообразия и обилия этих членистоногих приходился на поздний карбон, а затем все они бесследно исчезли (возможно, разделив судьбу гигантских насекомых – см. предыдущую главу); эту-то «вакансию» и заполнили первые позвоночные-фитофаги. Именно в раннепермских «пеликозавровых» сообществах впервые складывается нормальное для современности численное соотношение между растительноядными и хищниками (до того все тетраподы были либо рыбоядными, либо насекомоядными – то есть хищниками, консументами второго порядка).