73. См. рис. 62.
Можно убрать и другие 2 спички.
74. Надо поставить запятую: 5 < 5, 6 < 6.
75. Сначала надо выяснить, каков общий возраст всех игроков команды: 22 · 11 = 242. Возраст выбывшего игрока примем за х. После того как он выбыл, общий возраст игроков команды стал равен 242 – х. Поскольку игроков стало 10 и их средний возраст известен (21 год), можно составить следующее уравнение:
(242 – х): 10 = 21,
242 – х = 210,
х = 242–210 = 32.
Выбывшему игроку 32 года.
76. Рассуждение, конечно же, неверно. Эффект его внешней правильности достигается благодаря употреблению понятия «возраст отца» в двух разных смыслах: возраст отца как возраст человека, который является этим отцом, и возраст отца как число лет отцовства. Кстати, во втором значении понятие возраст, как правило, не употребляется: обычно под словосочетанием возраст отца понимается возраст этого человека, а не что-либо иное.
77. Сначала надо разделить 24 килограмма гвоздей на две равные части по 12 килограммов, уравновесив их на чашах весов. Затем так же разделить 12 килограммов гвоздей на две равные части по 6 килограммов. После этого отложить одну часть, а другую разделить таким же способом на части по 3 килограмма. Наконец к шестикилограммовой части гвоздей добавить эти 3 килограмма. В результате получится 9 килограммов гвоздей.
78. Это был четверг. В этот день Петр правдиво сказал, что вчера (т. е. в среду) он лгал, а Иван солгал насчет того, что вчера (т. е. в среду) он лгал, ведь по условию в среду он говорит правду.
79. Это число 147.
80.
81. В 1001 раз. Для того чтобы установить это, надо шестизначное число, полученное путем дублирования трехзначного числа, разделить на это трехзначное число. Получится 1001 (см. также задачу 51).
82. Ошибка данного рассуждения заключается в утверждении, что если бы не было времени, то не было бы ни одного дня, а значит, всегда стояла бы ночь. Как раз наоборот – если бы не было времени, то не могло бы быть ни одного дня и ни одной ночи, ведь понятие ночи (как и понятие дня) относится именно ко времени (и день, и ночь – это некие временные интервалы).
83. Примем число яблок, которые взяла Настя из первой корзины, за х, тогда в первой корзине осталось (12 – х) яблок. Именно столько яблок и взяла Маша из второй корзины. Значит, во второй корзине осталось
(12 – (12 – х)) яблок.
В двух корзинах вместе осталось
(12 – х) + 12 – (12 – х) = 12 – х + 12–12 + х = 12.
В двух корзинах вместе осталось 12 яблок.
84. Этого не может сказать ни одна свинья, ведь свиньи, как известно, не говорят. Эта не очень серьезная задача основана на двусмысленности вопроса: «Сколько свиней могут сказать…?» Слово «сказать» в этом вопросе можно понимать буквально – говорить членораздельной человеческой речью, а также его можно воспринимать в переносном значении – кто-то говорит от имени или за тех, которые сами говорить не могут (не умеют).
85. Сапожник и плотник – это одно лицо. В этом легко убедиться, составив простую схему:
86. Рассуждение неверно. Ошибка заключается в смешивании двух различных ситуаций в одних и тех же словах. Когда рабочие строят дом, их усилия складываются, поэтому работа идет быстрее и выполняется за более короткий срок. Когда корабли пересекают Атлантический океан, то их «усилия» не складываются: каждый корабль преодолевает океан все равно в одиночку, и поэтому время, затраченное на переправу через океан, не уменьшается при увеличении количества кораблей.
87. Стрелка у весов была сдвинута не вправо от нуля, а влево, т. е. весы показывали на 1 килограмм меньше. Значит, Петин портфель весит 3 килограмма, а Сашин – 4 килограмма. Вместе их портфели весят 7 килограммов. Когда мальчики их взвесили, весы показали на 1 килограмм меньше, т. е. 6 килограммов.
88. На первый взгляд, подобным образом можно расположить только 9 кружочков, но ведь в условии не сказано, что ряды кружочков должны быть горизонтальными или вертикальными. Они могут быть какими угодно. Расположить кружочки можно различными способами (рис. 63).
89. Может показаться, что оставшегося куска хватит на семь стирок. Однако это не так. Если длина, ширина и высота куска мыла уменьшились вдвое, то его объем уменьшился не в 2 раза, а в 8 раз:
Если после семи стирок объем куска мыла уменьшился в 8 раз, значит, оставшегося куска хватит всего на одну стирку (рис. 64).
90. Кусок материи в 2/3 метра надо сложить пополам. Образовавшаяся линия сгиба поделит его на две равные части по 1/3 метра. Затем надо сложить его еще раз пополам. Образовавшиеся линии сгиба поделят кусок материи на четыре равные части по 1/6 метра. Три таких части – это 3/6 метра, или искомая 1/2 метра (рис. 65).
91. Конечно же, композитором, равно как и художником, писателем или ученым, надо родиться, ведь если человек не родится, то он не сможет сочинять музыку, рисовать картины, писать романы или делать научные открытия. Эта шуточная задача основана на двусмысленности вопроса: «Действительно ли надо родиться?» Данный вопрос можно понимать буквально: надо ли рождаться на свет для того, чтобы заниматься каким-либо видом деятельности; а также данный вопрос можно понимать в переносном смысле: является ли талант композитора (художника, писателя, ученого) врожденным, данным от природы или же он приобретается во время жизни упорным трудом.
92. Рассуждение, конечно же, неверно. Его внешняя правильность основана на почти незаметном исключении еще одного варианта, который в данном рассуждении также необходимо было рассмотреть. Это вариант, когда не видит ни один глаз. Именно он и был пропущен: «Без правого глаза мы видим, без левого тоже, значит, глаза не обязательны для зрения». Правильное утверждение должно быть таким: «Без правого глаза мы видим, без левого тоже видим, но без двух вместе не видим, значит, мы видим или одним глазом, или другим, или двумя вместе, но мы не можем видеть без глаз, которые, таким образом, необходимы для зрения».
93. На первый взгляд может показаться, что попугаю можно задать до 99 вопросов. На самом же деле можно обойтись гораздо меньшим числом вопросов. Спросим его так: «Тебе больше 50 лет?» Если он ответит «да», то его возраст от 51 до 99 лет; если же он ответит «нет», то ему от 1 года до 50 лет. Количество вариантов его возраста после первого же вопроса сокращается вдвое. Следующий подобный вопрос: «Тебе больше (можно спросить – меньше) 25 лет?», «Тебе больше (меньше) 75 лет?» (в зависимости от ответа на первый вопрос) сокращает число вариантов в 4 раза и т. д. В итоге попугаю надо задать всего 7 вопросов.
94. Этот рисунок можно видеть по-разному. Присмотритесь к нему внимательно, и вы заметите, как изображение будет переворачиваться то в одну, то в другую сторону, как бы переливаться на ваших глазах. В одном случае мы видим шесть кубиков – три сверху, два посередине и один снизу, а в другом случае мы видим один кубик – в середине рисунка. Таким образом, всего на рисунке изображено семь кубиков.
95. Тереть теленка можно сколь угодно долго, однако сколько теленка ни три, у него все равно будет четыре ноги. Эта задача-шутка основана на том, что числительное «три» имеет омоним – глагол в повелительном наклонении.
96. Рассказчик разделил веревку не поперек, как, скорее всего, может показаться, а вдоль, сделав из нее две веревки одинаковой длины. Когда он связал две части вместе, веревка стала в 2 раза длиннее, чем была сначала.
97. При вычитании меньшего числа из большего действует одна закономерность: сумма всех цифр разности всегда будет равна 18 (независимо от исходных чисел). Кроме того, второй цифрой разности всегда будет 9. Таким образом, зная последнюю цифру разности (или первую), можно безошибочно установить всю разность.
98. Если бы не семеро, а трое пошли, то все равно те же самые семь рублей и нашли.
99. См. рис. 66.
100. На первый взгляд может показаться, что зазор будет настолько маленьким (ведь 10 метров – это почти ничто по сравнению с 40 000 километров), что в него не сможет пролезть не только человек, но даже кошка. На самом же деле величина зазора будет приблизительно равна 1,6 метра, т. е. человек не только сможет пролезть в него, но даже пройти (может быть, слегка наклонив голову).
Как известно, длина окружности равна 2ϖR, где R – ее радиус. Значит, радиус окружности равен L/2ϖ, где L – длина окружности. Таким образом, длина окружности и ее радиус находятся в отношении прямой пропорциональности, но при этом радиус меньше длины.