Аторвастатин[19], известный под множеством коммерческих названий, стал настоящим бестселлером среди лекарств. Его прописывают миллионам людей по всему миру. К сожалению, для людей, унаследовавших мутации, приводящие к семейной гиперхолестеринемии и сыгравшие такую важную роль в создании этого препарата, атровастатин не очень полезен – он просто не эффективен.
Есть несколько новых и еще толком непроверенных, но многообещающих лекарств, разработанных специально для людей с семейной гиперхолестеринемией, однако для многих из них единственным способом надежно контролировать уровень холестерина в крови остается операция по пересадке печени.
С другой стороны, аторвастатин буквально спас жизни миллионам и миллионам других людей. Ведь это лекарство помогает людям с повышенным уровнем холестерина избежать ранней кончины от коронарной недостаточности – пусть даже их проблемы вызваны не только генетикой, но и неправильным образом жизни.
В медицине часто бывает так: те, кто больше других нуждаются в помощи и заслуживают ее, получают ее далеко не первыми. А иногда и вовсе не получают.
Хотя, как вы вскоре узнаете, случается и иначе.
Порой время между открытием в генетике и прорывом в методах лечения измеряется десятилетиями.
Так было, как вы, наверное, помните, с попытками найти лекарство от ФКУ. Все началось в 1930‑х годах с работ Асбьёрна Фёллинга и закончилось разработками Роберта Гатри, придумавшего тест на это заболевание, доступный каждому.
Иногда – впрочем, теперь все чаще – процесс происходит быстрее. Так было, например, в случае с аргининосукцинатной ацидурией, АСА. При этом расстройстве метаболизма нарушается цикл мочевины и организму приходится очень стараться, чтобы выводить даже нормальные количества аммиака.
Звучит знакомо, не правда ли? Да все так и есть, АСА очень похожа на НОК – синдром, которым страдали Синди и Михаэль. И очень похожим образом у людей с АСА возникают нешуточные трудности с тем, чтобы пройти все стадии цикла преобразования аммиака, на выходе которого должна получиться мочевина.
А еще у людей с АСА часто наблюдается задержка интеллектуального развития. Поначалу считалось, что неврологический эффект – просто результат повышенного содержания аммиака в нервной системе, совсем как в случае Михаэля. Но потом врачи поняли, что проблемы с развитием у людей с АСА никуда не деваются и даже ухудшаются, даже если удается поддерживать сравнительно низкие уровни аммиака.
А совсем недавно исследователи из Медицинского колледжа Бейлора нашли еще один симптом АСА. Люди с этим заболеванием страдают от необъяснимого повышения кровяного давления. Конечно, ученые знали, что довольно простое соединение – оксид азота – играет немаловажную роль в механизмах снижения кровяного давления. И, очевидно, они понимали, что фермент, поломка которого вызывает АСА, является заодно и ключевым звеном в цепи производства оксида азота в организме.
Вооружившись этим знанием, доктора из Бейлора отставили проблемы, связанные с аммиаком, и стали давать пациентам с АСА лекарства, непосредственно выступающие донорами оксида азота. И у этих пациентов невероятным образом улучшилась память, да и задачки они стали решать лучше. А в качестве приятного дополнения у них еще и нормализовалось давление.{155}
Это, конечно, не полноценное излечение, но и промежуток между открытием факта и появлением медицинской процедуры, на нем основанной, составил не десятилетия, а всего пару лет. Сегодня многие врачи используют этот метод для устранения долговременных симптомов АСА. Кроме того, АСА помогает лучше понять, что именно происходит при недостатке оксида азота. Ведь этот симптом может проявляться и при куда более частых заболеваниях, например при болезни Альцгеймера. Вот вам еще один пример того, как редкий случай проливает свет на то, что так или иначе может затронуть любого человека.
Часто бывает очевидно, как именно носители редких заболеваний помогают остальному человечеству. Вы сами только что видели, как, начав с изучения редкой болезни, например, семейной гиперхолестеринемии, вызывающей повышенный уровень холестерина и сердечные приступы, ученые пришли к разработке лекарства вроде аторвастатина, который сегодня врачи используют, чтобы помогать миллионам.
Мой же собственный опыт фармацевтических открытий можно назвать как угодно, но только не прямым и понятным. Мой непрекращающийся интерес к изучению редких заболеваний привел к открытию нового антибиотика, который я назвал сидеромицином. Этот антибиотик уникален в том, что работает он, как умная бомба, специфично поражая инфекции, устойчивые к другим антибиотикам.
Тогда, в далекие 1990‑е годы, я совершенно не интересовался антибиотиками, зато увлеченно изучал гемохроматоз. Это генетическое заболевание приводит к тому, что организм усваивает с пищей слишком много железа. А это, в свою очередь, часто вызывает рак печени, сердечную недостаточность и преждевременную кончину. В результате моего исследования я неожиданно понял, что можно использовать некоторые особенности этого генетического заболевания, чтобы создать лекарство, прицельно уничтожающее микробов-убийц.
Согласно официальной статистике, более 20 000 человек в год гибнет от инфекций, вызванных микроорганизмами, резистентными к антибиотикам. И это только в США! Столь смертоносными эти микроорганизмы делает то, что они устойчивы ко многими или даже ко всем антибиотикам, находящимся в арсенале сегодняшних фармацевтов. Вот почему разработанное мною лекарство способно излечивать миллионы и спасать тысячи жизней в год.
Когда я только представил публике свое открытие, еще не было подтвержденных научных данных о связи гемохро-матоза и устойчивых к антибиотикам инфекций. Более того, многие из тех, с кем я тогда работал, вообще не могли понять, зачем я распыляюсь и одновременно занимаюсь сразу двумя несвязанными проблемами – гемохроматозом и микробами, устойчивыми к антибиотикам. К счастью, теперь все уже это поняли.
Собирая данные о гемохроматозе, я выискал с два десятка пациентов со всего мира. А клинические испытания сидеромицина должны начаться уже в 2015 году. Это, пожалуй, самый яркий пример из моей практики, показывающий, как знание, полученное при изучении редкого наследственного заболевания, помогает сохранить здоровье всего человечества.
Редкие генетические отклонения порой помогают нам и иначе. К примеру, останавливают, дабы мы не нанесли вред собственным детям ради пары лишних сантиметров.
Представьте себе, что вы можете уйти от собственной генетической наследственности. Вообразите, что у вас есть возможность отбросить любой из генов, способных привести к одному из бесчисленного множества видов рака. Есть только один подвох – в комплекте вам достается синдром Ларона.
Без лечения рост страдающих этим заболеванием обычно ниже 1,5 м. У них выступающий лоб и глубоко посаженные глаза. А еще продавленная переносица, крохотный подбородок и толстый животик. Известно около 300 человек по всему миру с этим отклонением, и примерно треть из них живет в нескольких деревнях высоко в Андах на юге провинции Лоха в Эквадоре.{156} И они все, кажется, абсолютно неуязвимы для рака.
Почему? Тут все непросто. Чтобы понять синдром Ларона, полезно знать о еще одном генетическом отклонении, которое находится на противоположном краю спектра. Оно называется синдромом Горлина. Люди с этим нарушением особенно подвержены определенному типу рака – базиломе[20]. Базилома довольно часто поражает взрослых людей, проводящих много времени на солнце, но у носителей синдрома Горлина этот тип рака может обнаружиться в возрасте чуть старше 10 лет и без какого-либо избыточного воздействия солнечного света.
Примерно один из 30 000 человек подвержен синдрому Горлина. Правда, про многих просто ничего в этом плане не известно – ведь обычно о синдроме ничего не напоминает, пока человек не заболевает раком. Тем не менее есть несколько визуально заметных дисморфических черт, которые при этом встречаются, – их может распознать даже неспециалист. Это макроцефалия (крупная голова), гипертелеоризм (широко расставленные глаза) и синдактилия 2–3 пальцев стопы (перепонка между вторым и третьим пальцами на ногах).{157} Есть и другие частые диагностические признаки: небольшие ямки на ладонях и уникальная форма ребер, видимая на рентгенограмме грудной клетки. Так почему же люди с синдромом Горлина так подвержены злокачественным опухолям вроде базиломы, развивающейся и без участия солнечных лучей? Чтобы ответить на этот вопрос, мне придется рассказать вам о гене под названием PTCH1. В норме организм использует его, чтобы производить белок под названием Patched‑1, играющий ключевую роль в регуляции роста клеток. Но у пациентов с синдромом Горлина, у которых Patched‑1 не работает, на сцену выходит белок под названием Sonic Hedgehog[21]. В результате ограничение на деление клеток снимается. Они начинают делиться. И делятся, делятся, делятся.{158}