MyBooks.club
Все категории

Саймон Сингх - Симпсоны и их математические секреты

На сайте mybooks.club вы можете бесплатно читать книги онлайн без регистрации, включая Саймон Сингх - Симпсоны и их математические секреты. Жанр: Прочая научная литература издательство -,. Доступна полная версия книги с кратким содержанием для предварительного ознакомления, аннотацией (предисловием), рецензиями от других читателей и их экспертным мнением.
Кроме того, на сайте mybooks.club вы найдете множество новинок, которые стоит прочитать.

Название:
Симпсоны и их математические секреты
Издательство:
-
ISBN:
-
Год:
-
Дата добавления:
29 январь 2019
Количество просмотров:
199
Читать онлайн
Саймон Сингх - Симпсоны и их математические секреты

Саймон Сингх - Симпсоны и их математические секреты краткое содержание

Саймон Сингх - Симпсоны и их математические секреты - описание и краткое содержание, автор Саймон Сингх, читайте бесплатно онлайн на сайте электронной библиотеки mybooks.club
Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.

Симпсоны и их математические секреты читать онлайн бесплатно

Симпсоны и их математические секреты - читать книгу онлайн бесплатно, автор Саймон Сингх
Назад 1 ... 45 46 47 48 49 50 Вперед

32

Здесь имеется в виду векторное произведение (скрещивание) двух векторов. Формула в ответе – это модуль векторного произведения, где θ – угол между векторами. Подобная «соль» в следующей шутке. Прим. ред.

33

Существует крупный публичный проект, нацеленный на поиск еще больших простых чисел Мерсенна. Сеть Great Internet Mersenne Prime Search (GIMPS) позволяет участникам проекта загружать бесплатные программы и выполнять их на своих домашних компьютерах в то время, когда они не используются для решения других задач. Затем каждый такой компьютер просеивает свою группу чисел в поисках рекордно большого простого числа. Если вы примете участие в этом проекте, вам может посчастливиться открыть следующее самое большое простое число Мерсенна.

34

Самовлюбленные числа чаще называют числами Армстронга. Прим. ред.

35

«В расцвете лет» на английском – in her prime; слово prime входит также в состав термина prime number – «простое число». Прим. перев.

36

Discrete Applied Mathematics 58, no. 3 (1995): 239–52.

37

On the Problem of Sorting Burnt Pancakes, Discrete Applied Mathematics 61, no. 2 (1995): 105–20.

38

В этой и аналогичных фразах намеренно опущен предлог «из». Прим. ред.

39

По всей вероятности, это был Дэвид Миркин, бывший инженер, интересующийся математикой. Он был исполнительным продюсером этого и еще двух эпизодов 1993 года («Последнее искушение Гомера» и «Бутон розы»), в которых есть отсылки к «Волшебнику страны Оз».

40

Если вы все же забыли эту теорему, информацию о ней можно найти в работе профессора Харма Барта под названием Periodic Strongly Continuous Semigroups, опубликованной в Annali di Matematica Pura ed Applicata115, no. 1 (1977): 311–18.

41

Здесь перечислены числа 1, 2, 3 в двоичной системе счисления. Прим. ред.

42

Символом «!», который присутствует в этой формуле, обозначается такая операция, как факториал. Суть этой операции лучше всего объяснить на примере: 1! = 1, 2! = 2 × 1, 3! = 3 × 2 × 1 и т. д.

43

В русскоязычной математической литературе эта кривая чаще всего называется «цепная линия». Прим ред.

44

Дональд Эрвин Кнут. Искусство программирования. Том 1. Основные алгоритмы. М.: Вильямс, 2015.

45

Google также в восторге от еще одного числа. В 2011 году начальное предложение цены за пакет патентов составило 1 902 160 540 долларов, что равно 1 миллиону долларов, умноженному на константу Бруна B2. Это число представляет собой сумму обратных значений простых чисел-близнецов, то есть простых чисел, разделенных только одним четным числом. Поэтому B2 = (1/3 + 1⁄5) + (1⁄5 + 1⁄7) + (1⁄11 + 1⁄13) + … = 1,902160540….

46

Умляут (нем. Umlaut – «перегласовка») – диакритический знак, указывающий на фонетическое явление умлаута гласных звуков в немецком и некоторых других языках. Обычно изображается в виде двух точек над буквой, в готическом шрифте традиционно выглядел как маленькая надстрочная буква e. Прим. ред.

47

Формула Мэчина для вычисления числа π была основана на следующих наблюдениях: ¼ π = 4cot−1(5) – cot−1(239). Здесь cot – это функция котангенса. Это уравнение не является бесконечным рядом, но его можно превратить в весьма эффективный бесконечный ряд посредством разложение в ряд Тейлора.

48

Бейли принимал участие в разработке алгоритма поиска цифр числа π, получившего название «краник», поскольку этот алгоритм, подобно водопроводному крану, генерирует ответы по одному. Это означает, что число π вычисляется капля за каплей, цифра за цифрой. Алгоритм «краник» можно настроить на вычисление любой конкретной цифры числа π с абсолютной точностью. Можно было бы предположить, что Бейли мог использовать свой алгоритм для получения сорокатысячной цифры. К сожалению, алгоритм Бейли работает только с шестнадцатеричной системой счисления, а не с десятичной.

49

Алекс Беллос. Алекс в стране чисел. Необычайное путешествие в мир математики. М.: КоЛибри, Азбука-Аттикус, 2012.

50

За вручением Нобелевской премии профессору Фринку наблюдает его воскресший отец, которого озвучивает легендарный комик Джерри Льюис. Это привело к образованию своего рода голосового цикла. Льюис озвучивал своего персонажа, опираясь на голос Фринка-младшего, озвученный Хэнком Азариа, который, в свою очередь, взял за основу голос главного героя Льюиса в фильме «Чокнутый профессор» (The Nutty Professor).

51

В теории алгоритмов класс задач NP определяется как содержащий те задачи, которые можно решить за полиномиальное время на недетерминированной машине Тьюринга. Задачи, имеющие полиномиальные по времени алгоритмы решения, можно решать с помощью компьютера значительно быстрее, чем путем прямого перебора, время которого экспоненциально. Это обусловливает практическое значение проблемы о равенстве классов задач P и NP. Прим. ред.

52

Это правило относится к области математики, известной как модульная арифметика (алгебра сравнений по модулю). Будучи весьма полезной в контексте криптографии, модульная арифметика играет также крайне важную роль в других областях математических исследований, в том числе в доказательстве последней теоремы Ферма.

53

Эпизод «Двумерное шоссе» (2-D Blacktop, сезон 7, эпизод 15) вышел на экраны 19 июня 2013 года. Прим. перев.

54

Название эпизода перекликается с названием культового фильма 1971 года «Двухполосное шоссе» (Two-Lane Blacktop) о двух стритрейсерах.

55

Эдвин Эббот. Флатландия. Дионис Бюргер. Сферландия. СПб: Амфора, 2015.

56

Перевод Н. Н. Амосовой. Прим. перев.

57

Энтони Хоуп. Узник Зенды. СПб: Композитор, 1993.

58

Ведро – это робот, представляющий собой ведро для мойки, который присутствует в четырех эпизодах «Футурамы».

59

Император Николай – это робот-император Робо-Венгрии.

60

Детерминант Вронского применяется для решения дифференциальных уравнений и назван в честь французско-польского математика XIX столетия Юзефа Марии Хене-Вронского. Прим. ред.

61

В русском сегменте интернета есть три сайта, полностью посвященных мультсериалу «Симпсоны». Это:

http://ru.simpsons.wikia.com/wiki/Симпсоны_вики

http://www.prosimpsonov.ru/

http://www.simpsons.pw/

Но на других сайтах есть отдельные страницы (очень интересные), посвященные мультсериалу. Вот несколько ссылок:

http://quibbll.com/5846-sekrety-izvesnogo-multseriala-simpsony/

https://tjournal.ru/p/making-of-simpsons

https://tjournal.ru/p/making-of-simpsons

http://ru.simpsons.wikia.com/wiki/Симпсоны_вики

По мультсериалу «Футурама»:

https://ru.wikiquote.org/wiki/Футурама

https://ru.wikipedia.org/wiki/Портал: Футурама

http://ru.futurama.wikia.com/wiki/Футурама_вики

Назад 1 ... 45 46 47 48 49 50 Вперед

Саймон Сингх читать все книги автора по порядку

Саймон Сингх - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mybooks.club.


Симпсоны и их математические секреты отзывы

Отзывы читателей о книге Симпсоны и их математические секреты, автор: Саймон Сингх. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.