MyBooks.club
Все категории

Лиза Рэндалл - Закрученные пассажи: Проникая в тайны скрытых размерностей пространства.

На сайте mybooks.club вы можете бесплатно читать книги онлайн без регистрации, включая Лиза Рэндалл - Закрученные пассажи: Проникая в тайны скрытых размерностей пространства.. Жанр: Прочая научная литература издательство -,. Доступна полная версия книги с кратким содержанием для предварительного ознакомления, аннотацией (предисловием), рецензиями от других читателей и их экспертным мнением.
Кроме того, на сайте mybooks.club вы найдете множество новинок, которые стоит прочитать.

Название:
Закрученные пассажи: Проникая в тайны скрытых размерностей пространства.
Издательство:
-
ISBN:
-
Год:
-
Дата добавления:
31 январь 2019
Количество просмотров:
117
Читать онлайн
Лиза Рэндалл - Закрученные пассажи: Проникая в тайны скрытых размерностей пространства.

Лиза Рэндалл - Закрученные пассажи: Проникая в тайны скрытых размерностей пространства. краткое содержание

Лиза Рэндалл - Закрученные пассажи: Проникая в тайны скрытых размерностей пространства. - описание и краткое содержание, автор Лиза Рэндалл, читайте бесплатно онлайн на сайте электронной библиотеки mybooks.club
Вселенная полна удивительных тайн. Возможно, она скрывает от нас дополнительные измерения, разительно отличающиеся от всего, что может себе представить наш здравый смысл, взращенный в обычном трехмерном пространстве. И хотя с каждым годом мы узнаем все больше и больше о нашем мире, сегодня как никогда ранее мы осознаем, что для понимания истинной природы Вселенной нам необходимо сделать еще очень многое.Лиза Рэндалл принадлежит к разряду тех ученых, которые сами, своими собственными исследованиями совершают прорывы и раздвигают границы современной науки, пытаясь найти ответы на фундаментальные вопросы, поставленные природой.Л. Рэндалл проводит нас через потрясающий мир закрученных дополнительных измерений, лежащих, возможно, в основе нашей Вселенной, и показывает путь, следуя которому мы сможем убедиться в их существовании.Книга «Закрученные пассажи» увлекает читателя в удивительное путешествие, проводя его через цепочку открытий от начала двадцатого века до настоящих дней, объясняя суть противоречий между теорией относительности, квантовой механикой и гравитацией, описывая достижения физики элементарных частиц, проблему иерархии, скейлинг, Великое объединение, суперсимметрию, дополнительные измерения, параллельные миры, эволюцию струнных теорий и многое другое.В непринужденной и занимательной форме Лиза Рэндалл беседует с читателем, раскрывая таинства сложной науки и увлекательно объясняя загадки мириад миров, существующих, возможно, рядом с тем миром, в котором мы живем и который мы только начинаем постигать.Книга вызовет несомненный интерес как у специалистов естественно-научных дисциплин, так и у широкого круга читателей.

Закрученные пассажи: Проникая в тайны скрытых размерностей пространства. читать онлайн бесплатно

Закрученные пассажи: Проникая в тайны скрытых размерностей пространства. - читать книгу онлайн бесплатно, автор Лиза Рэндалл

Эти маленькие браны, как и более знакомые макроскопические объекты, обладают массой, линейно растущей в зависимости от размера. Большое количество чего-нибудь (например, свинцовых труб, грязи или вишен) тяжелее, а меньшее количество легче. Так как окружающая крохотную область пространства брана очень мала, она будет и чрезвычайно легкой. Расчеты Энди показали, что в предельном случае, когда брана настолько мала, как это только можно себе представить, такая крохотная брана выглядит как новая безмассовая частица. Результат Энди был очень важным, так как он показывал, что даже самая основная гипотеза теории струн — все состоит из струн — не всегда верна. Браны тоже вносят вклад в спектр частиц.

Важное наблюдение Джо в 1995 году состояло в том, что эти новые частицы, возникающие из крохотных р-бран, можно также объяснить с помощью — D-бран. Действительно, в работе, устанавливающей важность D-бран, Джо показал, что D-браны и р-браны — на самом деле одно и то же. При тех энергиях, когда теория струн и общая теория относительности дают одинаковые предсказания, D-браны превращаются в р-браны. Джо и Энди на самом деле изучали одни и те же объекты, хотя поначалу они этого не понимали. Полученный результат означал, что в важности — D-бран уже нельзя более сомневаться: они не менее важны, чем р-браны, а р-браны существенны для спектра частиц теории струн. Кроме того, появился красивый способ понять, почему р-браны эквивалентны. D-бранам. Он основан на тонком и важном понятии дуальности.


Зрелые браны и дуальность

Дуальность — ОДНО из самых интересных понятий последних десяти лет в физике частиц и теории струн. Она играет главную роль в недавних успехах как квантовой теории поля, так и теории струн, и, как мы вскоре увидим, имеет особенно важные приложения для теорий с бранами.

Две теории дуальны, если они являются одной и той же теорией, но при разных описаниях. В 1992 году индийский физик Ашок Сен одним из первых заметил дуальность в теории струн. В своей работе, развивавшей идею дуальности, которую первоначально предложили в 1977 году физики Клаус Монтонен и Дэвид Олив, он показал, что некая теория остается в точности такой же, что и раньше, если частицы и струны в теории меняются местами. В 1990-е годы родившийся в Израиле физик Нати Зейберг, работавший затем в Университете Ратгерса, также продемонстрировал удивительные дуальности между различными супер-симметричными теориями поля с кажущимися различными взаимодействиями.

Чтобы понять важность понятия дуальности, полезно иметь небольшое представление о том, каким образом теоретики-струнники в общем случае производят вычисления. Предсказания теории струн зависят от натяжения струны. Но они зависят также от величины, называемой константой связи струны, которая определяет интенсивность взаимодействия струн. Скользят ли они мимо, чуть касаясь друг друга, что соответствует малой константе связи, или прилипают друг к другу, обсуждая свою дальнейшую судьбу, что соответствует сильной константе? Если бы мы знали величину константы связи струны, мы могли бы изучать теорию струн только для этого конкретного значения. Но так как мы до сих пор не знаем значения константы связи струны, мы можем надеяться понять теорию только в случае, если сможем сделать предсказания для любого значения константы взаимодействия струн. Тогда мы сможем найти, какой из вариантов работает.

Проблема заключалась в том, что с первых шагов теории струн казалось, что теория с большой константой связи очень неподатлива. В 1980-е годы была понята только теория струн со слабо взаимодействующими струнами. (Я использую прилагательное «слабый» для описания интенсивности взаимодействий струн, но пусть это слово не введет вас в заблуждение — оно не имеет ничего общего со слабым взаимодействием.) Когда струны взаимодействуют очень сильно, невероятно трудно произвести хоть какие-нибудь вычисления. Точно так же, как проще развязать слабый узел, чем тугой, теория, в которую входят только слабые взаимодействия, значительно более податлива, чем теория с сильными взаимодействиями. Когда струны взаимодействуют друг с другом очень сильно, они превращаются в сильно запутанный клубок, который слишком трудно распутать. Физики испытывали различные хитроумные подходы для расчетов, включающих сильно взаимодействующие струны, но не нашли методов, которые можно было бы с пользой применить к реальному миру.

На самом деле не только теорию струн, но все физические теории легче понимать, когда взаимодействия слабы. Происходит это потому, что если слабое взаимодействие является всего лишь малым возмущением, или отклонением от решаемой теории (обычно теории без взаимодействия), то вы можете использовать технику, известную как теория возмущений. Эта теория позволяет постепенно накапливать ответ на вопрос о слабовзаимодействующей теории, начав с теории без взаимодействий и шаг за шагом вычисляя малые поправки. Теория возмущений — это систематическая процедура, говорящая нам, как улучшить расчет последовательными шагами, пока вы не достигнете любого желаемого уровня точности (или пока вы не устанете, что бы ни произошло раньше).

Использование теории возмущений для приближенного вычисления величины в нерешаемой теории можно сравнить со смешиванием красок для приближенного получения желаемого цвета. Допустим, вы стремитесь получить нежноголубой цвет с примесью зеленого, который напоминает Средиземное море в самые красивые моменты. Вы можете начать с синей краски, а затем подмешивать во все меньших количествах зеленую краску, поочередно добавляя чуть больше синей, пока не достигнете (почти) точного цвета, которого вы добивались. Изменение вашей смеси красок в такой манере — это путь, совершаемый малыми шагами для получения настолько близкого приближения к желаемому цвету, который вы хотите. Аналогично, теория возмущений — это метод последовательного приближения к правильному ответу для любой задачи, которую вы решаете, путем совершения последовательных шагов, начиная с задачи, которую вы уже знаете, как решать.

С другой стороны, попытка найти ответ для задачи в теории с сильной связью больше напоминает попытку воспроизвести картину Джексона Поллака, хаотично распыляя краски. Каждый раз, как вы брызгали бы немного краски, картина полностью менялась бы. Ваша картина не стала бы ближе к желаемой после двенадцати итераций по сравнению с тем, чем она была после восьми. На самом деле каждый раз, когда вы разбрызгивали бы краску, вы старались бы сделать это так, чтобы не покрыть слишком большой кусок от предыдущей попытки, изменяя картину настолько сильно, что вы по существу начинали бы каждый раз заново.

Аналогично, теория возмущений бесполезна, когда решаемая теория возмущается сильным взаимодействием. Так же как тщетны попытки повторить современный разбрызганный шедевр, не будут иметь успеха и систематические попытки получить приближенно интересующую вас величину в теории с сильным взаимодействием. Теория возмущений полезна и вычисления можно контролировать только тогда, когда взаимодействия слабы.

Иногда, в определенных исключительных ситуациях, даже когда теория возмущений бесполезна, удается все же понять качественные свойства сильно взаимодействующей теории. Например, физическое описание вашей системы может напоминать в общих чертах слабовзаимодействующую теорию, хотя детали, возможно, довольно сильно различаются. Однако чаще невозможно что-либо сказать о сильновзаимодействующей системе. Даже качественные свойства сильновзаимодействующей системы часто полностью отличаются от свойств на первый взгляд похожей слабовзаимодействующей системы.

Итак, есть две вещи, которые можно ожидать от сильновзаимодействующей десятимерной теории струн. Вы можете думать, что никто не способен построить ее, и поэтому никто не может ничего о ней сказать, или вы можете ожидать, что сильновзаимодействующая десятимерная теория струн выглядит, по меньшей мере в общих чертах, как слабо связанная теория струн. Удивительно, но в некоторых случаях ни один из этих вариантов не оказывается правильным. В случае частного типа десятимерной теории струн, называемой НА, сильновзаимодействующая струна не имеет ничего общего со слабовзаимодействующей струной. Но тем не менее мы можем изучать ее следствия, так как это податливая система, в которой возможны расчеты.

На конференции «Струны-95», которая проходила в Университете Южной Калифорнии в марте 1995 года, Эдвард Виттен поразил аудиторию, показав, что при низких энергиях вариант десятимерной теории суперструн с сильной связью полностью эквивалентен теории, которую большинство ученых считало совершенно иной, а именно, одиннадцатимерной супергравитации, т. е. одиннадцатимерной суперсимметричной теории, содержащей гравитацию. Объекты этой эквивалентной теории супергравитации взаимодействовали слабо, так что можно было с пользой применять теорию возмущений.


Лиза Рэндалл читать все книги автора по порядку

Лиза Рэндалл - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mybooks.club.


Закрученные пассажи: Проникая в тайны скрытых размерностей пространства. отзывы

Отзывы читателей о книге Закрученные пассажи: Проникая в тайны скрытых размерностей пространства., автор: Лиза Рэндалл. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.