Через некоторое время пузырь начинает раздуваться, увеличивая доступную для наблюдения область пространства. Наблюдатель обнаруживает себя в окружении несколько более дружелюбной среды: космологическая постоянная уменьшается, а горизонт увеличивается. Тем не менее космологическая постоянная в новой долине всё ещё слишком велика для комфортного существования. Но пузырь снова раздувается, что приводит к дальнейшему уменьшению космологической постоянной. Такие резкие изменения могут происходить несколько раз. Наблюдатель последовательно проходит через целую череду миров, непригодных для жизни. В конце концов пузырь оказывается на нулевой высоте, с нулевой энергией вакуума, в полностью суперсимметричном мире. Пузырь эволюционирует до открытого мира с отрицательной кривизной, и на этом его эволюция завершается. Вероятность того, что в процессе эволюции от начального состояния до кладбища вселенных пузырь пройдёт через состояние, пригодное для возникновения жизни, чрезвычайно мала.
Но давайте предположим, что пузырь всё-таки пройдёт в своей эволюции стадию вселенной, близкой по параметрам к нашей, прежде чем свалится в суперсимметричное кладбище. Это очень маловероятно, учитывая, насколько редки удовлетворяющие нас долины, но это может случиться. Разовьётся ли в нём жизнь? Это очень сильно зависит от того, каким путём наш фрагмент пространства оказался в благоприятной для жизни долине. Одним из огромного количества вариантов является сваливание пузыря в долину с инфляционного обрыва. Это хорошо. Инфляция приводит к возникновению гостеприимной вселенной. Но если фрагмент пространства попадает в долину другим путём, тогда наша ставка проиграна. Если пузырь не задержится на некоторое время на краю обрыва, вселенная, скорее всего, никогда не получит достаточно тепла и вещества для формирования звёзд, галактик, планет и в конечном итоге – возникновения жизни.
С точки зрения наблюдателя, который видит сменяющую друг друга череду условий, заканчивающуюся на кладбище вселенных, вероятность возникновения жизни крайне мала. Но теперь давайте представим, что мы могли бы оказаться снаружи нашей Вселенной и увидеть Мегаверсум в целом. При взгляде из Мегаверсума история – это не последовательность событий. История Мегаверсума – это огромное количество параллельных процессов, множество эволюционирующих параллельных карманных вселенных. По мере эволюции Мегаверсума карманные вселенные заполняют весь Ландшафт. Поэтому видится совершенно неизбежным, что какая-то, пусть и очень малая, часть этих вселенных окажется в процессе своего развития на обрыве, упав с которого окажется в долине, пригодной для жизни, наполнившись в процессе падения веществом и энергией. Кого заботят остальные миры, для которых всё закончится плохо? Жизнь возникнет там, где это возможно, и только там, где это возможно.
Ещё раз о полезности биологической аналогии. Представьте себе дерево жизни, каждая ветвь которой представляет отдельный вид. Если вы будете подниматься по этому дереву, начиная от ствола, и будете случайным образом сворачивать на каждой развилке, вы очень быстро доберётесь до конца последней ветки, символизирующего вымирание вида. Любой вид рано или поздно вымирает, но если скорость возникновения новых видов превышает скорость их исчезновения, дерево продолжает жить и разрастаться. Исследуя любой один конкретный путь развития конкретного вида от возникновения до вымирания, вы, скорее всего, придёте к выводу, что вероятность возникновения разумной жизни равна нулю. Но рассматривая дерево в целом как растущий и развивающийся организм, мы с уверенностью можем сказать, что рано или поздно оно породит ветвь разумного вида. Как мы видим, параллельное представление эволюции приводит к гораздо более оптимистичным выводам.
Что было бы, если бы Германия победила во Второй мировой войне? Или как выглядела бы сегодня жизнь, если бы астероид, 65 миллионов лет назад убивший динозавров, пролетел мимо Земли? Идея параллельных миров, расходящихся разными путями в критических точках исторического процесса, – излюбленная тема писателей-фантастов. Однако в настоящей науке я всегда отвергал подобные идеи как легкомысленную чушь. И вдруг, к своему удивлению, я обнаружил, что говорю и думаю о подобных вещах. Фактически вся моя книга как раз и посвящена параллельным вселенным: Мегаверсум представляет собой мир карманных вселенных, изолированных друг от друга, из-за того что они оказываются за пределами горизонтов друг друга.
Я далеко не первый физик, который всерьёз рассматривал возможность того, что реальность – что бы ни означало это слово – содержит помимо нашего собственного огромное количество альтернативных миров с историями, отличными от истории нашего мира. Этот вопрос является частью продолжающейся по сей день дискуссии об интерпретации квантовой механики. Где-то в середине 1950-х годов молодой аспирант Хью Эверетт III предложил радикально отличающуюся от принятой тогда интерпретацию квантовой механики, которую он назвал многомировой интерпретацией. Гипотеза Эверетта утверждает, что на каждом перекрёстке истории мир ветвится на множество параллельных вселенных, каждая из которых имеет свою альтернативную историю. Хотя это звучит как махровая спекуляция, некоторые из величайших физиков современности были доведены странностями квантовой механики до того, чтобы принять идеи Эверетта. Среди них Ричард Фейнман, Мюррей Гелл-Манн, Стивен Вайнберг, Джон Уилер и Стивен Хокинг. Многомировая интерпретация послужила источником вдохновения для антропного принципа, который впервые сформулировал в 1974 году Брэндон Картер.
На первый взгляд многомировая интерпретация Эверетта имеет мало общего с вечной инфляцией Мегаверсума. Однако мне думается, что это практически одно и то же. Я уже неоднократно подчёркивал, что квантовая механика не предсказывает поведение системы в будущем на основе её состояния в прошлом. Вместо этого она предсказывает вероятность реализации того или иного исхода эксперимента, или, правильнее, вероятность результата наблюдения. Эта вероятность описывается фундаментальным математическим объектом квантовой механики – волновой функцией.
Если вы немного знакомы с квантовой механикой и в курсе, что Шрёдингер открыл волновое уравнение, описывающее поведение электронов, то вы слышали и о волновой функции. Я хотел бы, чтобы вы забыли всё это. Волновая функция Шрёдингера представляет собой очень частный случай гораздо более общей концепции, и именно на этой более общей идее я хочу сейчас заострить ваше внимание. В любой момент, например прямо сейчас, есть многое на свете, друг читатель, что можно наблюдать в подлунном мире. Я мог бы поднять взгляд на окно над моим рабочим столом и посмотреть, не взошла ли луна. Или я мог бы сидеть и планировать эксперимент с двумя щелями (см. главу 1), а затем наблюдать расположение пятен на экране. Ещё один эксперимент мог бы состоять в наблюдении за нейтроном, который был «приготовлен» в определённое время, скажем, десять минут назад. Как вы помните из главы 1, нейтроны, не связанные в ядре, неустойчивы. В среднем (но только в среднем) нейтрон распадается в течение двенадцати минут на протон, электрон и антинейтрино. В этом случае суть наблюдения могла бы состоять в том, чтобы определить, распался нейтрон по истечении десяти минут или по-прежнему пребывает в первоначальном виде. Каждый из этих экспериментов предполагает более одного возможного результата. В самом общем смысле волновая функция представляет собой список вероятностей для всех возможных результатов всех возможных наблюдений состояний рассматриваемой системы. Если быть более точным, то она представляет собой список квадратных корней всех этих вероятностей.
Распад нейтрона является хорошей иллюстрацией для начала разговора о волновой функции. Для упрощения рассуждений предположим, что эксперимент по наблюдению нейтрона может иметь только два исхода: нейтрон либо распался, либо нет. Список вероятностей в этом случае будет очень коротким – в нём будет только две записи для волновой функции. Если первоначально нейтрон находится в нераспавшемся состоянии, то список значений его волновой функции будет состоять из двух записей: 1 и 0. Другими словами, вероятность, что первоначально нейтрон находится в нераспавшемся состоянии, равна 1, а вероятность того, что он распался, равна 0. Но уже через короткое время появляется крохотная вероятность, что нейтрон распадётся. Теперь две записи значений волновой функции в нашем списке будут отличаться от 1 и 0. Первое значение будет чуть меньше 1, а второе – чуть больше 0. Чуть больше чем через десять минут эти вероятности сравняются, а ещё через десять минут они поменяются местами: вероятность того, что нейтрон остался целым, будет стремиться к нулю, а вероятность того, что он распался на протон, электрон и антинейтрино, – к единице. Квантовая механика содержит ряд правил, позволяющих рассчитать эволюцию волновой функции со временем. В своей наиболее общей форме волновая функция описывает систему, включающую в себя всё: всю наблюдаемую Вселенную, включая наблюдателей, проводящих эксперименты. Так как в этой системе может быть более одного сгустка материи, который может быть назван наблюдателем, теория должна быть самосогласованной в отношении описания всех процессов наблюдений. Волновая функция содержит полное квантово-механическое описание системы, и, следовательно, нам необходимо доказать согласованность теории, например, для случая, когда два наблюдателя встречаются в одном месте, чтобы обсудить результаты своих наблюдений.