MyBooks.club
Все категории

Педро Домингос - Верховный алгоритм

На сайте mybooks.club вы можете бесплатно читать книги онлайн без регистрации, включая Педро Домингос - Верховный алгоритм. Жанр: Прочее издательство -,. Доступна полная версия книги с кратким содержанием для предварительного ознакомления, аннотацией (предисловием), рецензиями от других читателей и их экспертным мнением.
Кроме того, на сайте mybooks.club вы найдете множество новинок, которые стоит прочитать.

Название:
Верховный алгоритм
Издательство:
-
ISBN:
-
Год:
-
Дата добавления:
6 октябрь 2019
Количество просмотров:
82
Читать онлайн
Педро Домингос - Верховный алгоритм

Педро Домингос - Верховный алгоритм краткое содержание

Педро Домингос - Верховный алгоритм - описание и краткое содержание, автор Педро Домингос, читайте бесплатно онлайн на сайте электронной библиотеки mybooks.club

Верховный алгоритм читать онлайн бесплатно

Верховный алгоритм - читать книгу онлайн бесплатно, автор Педро Домингос

Обратная дедукция как сверхученый. Он будет систематически рассматривать доказательства, взвешивать возможные выводы, сопоставлять лучшие и использовать их вместе с другими доказательствами для формулировки дальнейших гипотез, и все это с компьютерной скоростью. Это чисто и изящно, по крайней мере на вкус символиста. С другой стороны, у метода есть ряд серьезных недостатков. Количество возможных выводов очень велико, и, чтобы не заблудиться, приходится не держаться близко к исходному знанию. Обратную дедукцию легко запутать шумом: как разобраться, каких шагов в дедукции не хватает, если предположения или заключения ложны? Еще более серьезно то, что реальные понятия очень часто не определяются сжатым набором правил. Они не черно-белые, а находятся в большой серой зоне между, скажем, спамом и не-спамом, поэтому приходится взвешивать и накапливать слабые доказательства, пока картина не прояснится. В частности, при диагностике заболеваний одним симптомам придается большее значение, чем другим, и неполные доказательства — это нормально. Никто еще не преуспел в обучении набору правил, которое будет определять кошку, глядя на пиксели на картинке, и, наверное, это просто невозможно.

Очень критично по отношению к символистскому обучению настроены коннекционисты. Они считают, что понятия, которые можно определить с помощью логических правил, лишь вершина айсберга, а в глубине есть много такого, что формальные рассуждения просто неспособны увидеть, точно так же как значительная часть работы мозга скрыта в подсознании. Нельзя построить бесплотного автоматического ученого и надеяться, что он сделает что-то полезное: сначала надо одарить его чем-то вроде настоящего мозга, соединенного с насто­ящими органами чувств, вырастить в реальном мире, возможно, даже ставить ему время от времени подножки. Как же построить такой мозг? Путем обратной инженерии. Если вы решили построить путем обратной инженерии автомобиль, придется заглянуть под капот. Если вы хотите таким же образом создать мозг, надо заглянуть в черепную коробку.

ГЛАВА 4

КАК УЧИТСЯ НАШ МОЗГ?

С момента своего открытия правило Хебба — краеугольный камень коннекционизма. Своим названием это научное направление обязано представлению, что знания хранятся в соединениях между нейронами. В вышедшей в 1949 году книге The Organization of Behavior («Организация поведения») канадский психолог Дональд Хебб описывал это следующим образом: «Если аксон53 клетки A расположен достаточно близко к клетке B и неоднократно или постоянно участвует в ее стимуляции, то в одной или обеих клетках будут иметь место процессы роста или метаболические изменения, которые повышают эффективность возбуждения клеткой A клетки B». Это утвержде­ние часто перефразируют как «нейроны, которые срабатывают вместе, связываются друг с другом».

В правиле Хебба слились идеи психологии, нейробиологии и немалая доля домыслов. Ассоциативное обучение было любимой темой британских эмпириков начиная с Локка, Юма и Джона Стюарта Милля. В Principles of Psychology («Принципы психологии») Уильям Джеймс54 сформулировал общий принцип ассоциации, который замечательно похож на правило Хебба, но вместо нейронов в нем присутствуют процессы в головном мозге, а вместо эффективности стимуляции — распространение возбуждения. Примерно в то же самое время великий испанский нейробиолог Сантьяго Рамон-и-Кахаль провел первые подробные исследования мозга, окрашивая нейроны по недавно изобретенному методу Гольджи55, и каталогизировал свои наблюдения, как ботаники классифицируют новые виды деревьев. Ко времени Хебба нейро­биологи в общих чертах понимали, как работают нейроны, однако именно он первым предложил механизм, согласно которому нейроны могут кодировать ассоциации.

В символистском обучении между символами и понятиями, которые они представляют, существует однозначное соответствие. Коннекционистские же представления распределены: каждое понятие представлено множеством нейронов, и каждый нейрон участвует в представлении многих концепций. Нейроны, которые возбуждают друг друга, образуют, в терминологии Хебба, «ансамбли клеток». С помощью таких собраний в головном мозге представлены понятия и воспоминания. В каждый ансамбль могут входить нейроны из разных областей мозга, ансамбли могут пересекаться. Так, клеточный ансамбль для понятия «нога» включает ансамбль для понятия «ступня», в который, в свою очередь, входят ансамбли для изображения ступни и звучания слова «ступня». Если вы спросите символистскую систему, где находится понятие «Нью-Йорк», она укажет точное место его хранения в памяти. В коннекционистской системе ответ будет «везде понемногу».

Еще одно отличие между символистским и коннекционистским обучением заключается в том, что первое — последовательное, а второе — параллельное. В случае обратной дедукции мы шаг за шагом разбираемся, какое правило необходимо ввести, чтобы от посылок прийти к желаемым выводам. В коннекционистской модели все нейроны учатся одновременно, согласно правилу Хебба. В этом нашли отражение различия между компьютерами и мозгом. Компьютеры даже совершенно обычные операции — например, сложение двух чисел или переключение выключателя — делают маленькими шажочками, поэтому им нужно много этапов. При этом шаги могут быть очень быстрыми, потому что транзисторы способны включаться и выключаться миллиарды раз в секунду. Мозг же умеет выполнять большое количество вычислений параллельно благодаря одновременной работе миллиардов нейронов. При этом нейроны могут стимулироваться в лучшем случае тысячу раз в секунду, и каждое из этих вычислений медленное.

Количество транзисторов в компьютере приближается к количеству нейронов в головном мозге человека, однако мозг безусловно выигрывает в количестве соединений. Типичный транзистор в микропроцессоре не­посредственно связан лишь с немногими другими, и применяемая технология планарных полупроводников жестко ограничивает потенциал совершенствования работы компьютера. А у нейрона — тысячи синапсов. Если вы идете по улице и увидели знакомую, вам понадобится лишь десятая доля секунды, чтобы ее узнать. Учитывая скорость переключения нейронов, этого времени едва хватило бы для сотни шагов обработки информации, но за эти сотни шагов мозг способен просканировать всю память, найти в ней самое подходящее и адаптировать найденное к новому контексту (другая одежда, другое освещение и так далее). Каждый шаг обработки может быть очень сложным и включать большой объем информации.

Это не значит, что с помощью компьютера нельзя симулировать работу мозга: в конце концов, именно это делают коннекционистские алгоритмы. Поскольку компьютер — универсальная машина Тьюринга, он может выполнять вычисления, происходящие в мозге, как и любые другие, при условии, что у него есть достаточно памяти и времени. В частности, недостаток связности можно компенсировать скоростью: использовать одно и то же соединение тысячу раз, чтобы имитировать тысячу соединений. На самом деле сегодня главный недостаток компьютеров заключается в том, что в отличие от мозга они потребляют энергию: ваш мозг использует примерно столько мощности, сколько маленькая лампочка, в то время как электричеством, питающим компьютер Watson, о котором мы рассказывали выше, можно осветить целый бизнес-центр.

Тем не менее для имитации работы мозга одного правила Хебба мало: сначала надо разобраться с устройством головного мозга. Каждый нейрон напоминает крохотное деревце с огромной корневой системой из дендритов56 и тонким волнистым стволом — аксоном. Мозг в целом похож на лес из миллиардов таких деревьев, однако лес этот необычный: ветви деревьев соединены в нем с корнями тысяч других деревьев (такие соединения называются синапсами), образуя колоссальное, невиданное хитросплетение. У одних нейронов аксоны короткие, у других — чрезвычайно длинные, простирающиеся от одного конца мозга к другому. Если расположить аксоны мозга друг за другом, они займут расстояние от Земли до Луны.

Эти джунгли потрескивают от электрических разрядов. Искры бегут по стволам и порождают в соседних деревьях еще больший сонм искр. Время от времени лес неистово вспыхивает, потом снова успокаивается. Когда человек шевелит пальцем на ноге, серии электрических разрядов — так называемых потенциалов действия — бегут вниз по спинному мозгу, пока не достигнут мышц пальца и не прикажут ему двигаться. Работа мозга похожа на симфонию таких электрических разрядов. Если бы можно было посмотреть изнутри на то, что происходит в тот момент, когда вы читаете эту страницу, сцена затмила бы самые оживленные мегаполисы из фантасти­ческих романов. Этот невероятно сложный узор нейронных искр в итоге порождает человеческое сознание.


Педро Домингос читать все книги автора по порядку

Педро Домингос - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mybooks.club.


Верховный алгоритм отзывы

Отзывы читателей о книге Верховный алгоритм, автор: Педро Домингос. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.