Квадратура параболы
Далее Архимед доказал, что если площадь большого треугольника равна Т, то площадь каждого из двух треугольников меньшего размера составляет , а площадь каждого из четырех треугольников, построенных на их сторонах, равна и т. д. Другими словами, площадь параболического сектора, представляющая собой сумму всех треугольников, — это бесконечный ряд:
или
или
В заключение Архимед доказал, что сумма этого ряда равна . Следовательно, чтобы вычислить площадь между прямой и параболой, достаточно начертить треугольник, измерить длину его основания и высоту, рассчитать площадь и умножить полученный результат на . Я не буду приводить здесь доказательство Архимеда, а вместо этого покажу рисунок, который содержит в себе это доказательство. Математические схемы такого типа называются доказательством без слов. Приведенный ниже рисунок — пожалуй, мой самый любимый в этой книге, и он гласит, что
Посмотрите на этот рисунок и попытайтесь понять почему. (А если не сможете, откройте Приложение 6.) Если это уравнение верно, тогда общая площадь равна:
Что и требовалось доказать.
Квадратура параболы Архимеда — самый наглядный пример применения метода последовательных исчерпываний: суммирование последовательности площадей малых фигур, приближающихся к площади большой фигуры. Доказательство этого метода считается наиболее значительным достижением Архимеда, поскольку отображает первую «современную» трактовку математической бесконечности. За две сотни лет до Архимеда философ Зенон предостерегал против использования такого понятия, как бесконечность, в серии парадоксов. В самом знаменитом из них, «Ахиллес и черепаха», демонстрировалось, что сложение бесконечного количества величин приводит к абсурдному результату.
Представьте себе, говорил Зенон, что Ахиллес пытается догнать черепаху. Когда атлет достигнет того места, где она была, когда он начал свой бег, черепаха проползет немного дальше. Когда он доберется до второй позиции, черепаха снова продвинется дальше. Ахиллес может продолжать свой бег сколько угодно, но каждый раз, когда он будет достигать того места, где находилась черепаха, она уже будет немного впереди. Зенон утверждал, что если рассматривать движение как бесконечное количество рывков на протяжении бесконечного количества интервалов, то быстроногий Ахиллес никогда не догонит неповоротливую черепаху. Древние греки так и не смогли развязать логические узлы Зенона, поэтому математики всячески избегали концепции бесконечности в своей работе. Даже Архимед, использовавший метод последовательных исчерпываний, никогда не называл всеобъемлющую сущность именем «бесконечный ряд» так прямо, как это делаю я. Но различия касались исключительно терминологии, а не самой идеи. Архимед был первым мыслителем, создавшим аппарат для работы с бесконечным рядом, имеющим конечный предел. Это было важно не только для покорения площадей гораздо более сложных фигур, чем парабола, но и для начала концептуального пути к исчислению. Архимед стал первым из тех атлантов, на плечи которых обопрется в свое время Исаак Ньютон.
Если бесконечность — это самое большое число, тогда какое число самое маленькое? В XVII столетии математики ввели новую концепцию под названием «бесконечно малая величина» — величина, которая меньше любой другой действительной величины, но все же больше ноля.
Бесконечно малая величина была и чем-то, и ничем: достаточно большая для применения в математике, но и достаточно малая, чтобы исчезнуть, когда вам это необходимо. Рассмотрим в качестве иллюстрации окружность, изображенную на рисунке ниже. В нее вписан двенадцатиугольник — фигура с 12 сторонами, состоящая из 12 идентичных треугольников с общей вершиной, совокупная площадь которых примерно равна площади круга. Если я построю в этой окружности многоугольник с большим числом сторон, содержащий большее количество более узких треугольников, их совокупная площадь еще сильнее приблизится к площади круга. Если я продолжу увеличивать количество сторон, в предельном случае я получу многоугольник с бесконечным количеством сторон, содержащих бесконечное количество бесконечно узких треугольников. Площадь каждого такого треугольника представляет собой бесконечно малую величину, но их совокупная площадь равна площади круга.
В предыдущих главах мы уже дважды встречались с немецким астрономом Иоганном Кеплером. Это именно он понял, что планеты движутся по эллиптическим орбитам, и это он побывал на одиннадцати свиданиях, прежде чем нашел вторую жену. Когда Кеплер сделал предложение будущей фрау К., оставался такой пустяк, как организация свадебной церемонии. Покупая вино, ученый увидел, что виноторговцы определяют объем полной бочки вина, вставляя в нее по диагонали прут через наливное отверстие, расположенное посредине боковой стороны бочки. Это был грубый, приближенный метод, и он совсем не понравился Кеплеру, поскольку прут одной и той же длины подходил для бочек разных размеров, как показано на рисунке ниже.
Измерение объема винных бочек
Кеплер начал размышлять над тем, как точнее вычислить объем бочки, для того чтобы определить, в бочке какой формы было бы больше всего вина при фиксированной длине прута [5]. Вдохновленный идеями Архимеда, Кеплер разработал метод, в соответствии с которым разделил каждую бочку на бесконечное количество бесконечно малых фигур, объем которых можно было рассчитать. Затем он доказал, что для прута длиной l, проходящего от наливного отверстия до дальнего угла бочки, бочка будет иметь максимальный объем, если ее ширина равна . Кеплер оказался первым представителем целого поколения математиков, использовавших бесконечно малые величины в процессе вычисления площадей и объемов. Среди математиков разных стран, от Англии до Италии, начался бурный рост активности в этой области, что отображало самый значительный сдвиг в математической культуре со времен древних греков — ярых приверженцев концепций, имеющих логический смысл. Теперь же логическая строгость была отброшена, уступив место тому, что давало результаты. Бесконечно малые величины представляли собой нечто неопределенное, что существовало и не существовало одновременно. Но никто не собирался отказываться от них.
Бесконечно малые величины позволили разработать чрезвычайно эффективный метод определения касательной — линии, которая касается кривой в определенной точке, но не пересекает ее. Представьте, что нам необходимо найти касательную в точке Р к кривой, изображенной на рисунке ниже. Стратегия построения касательной состоит в том, чтобы провести приближенную прямую в соответствующей точке, а затем улучшать приближение до тех пор, пока она не совпадет с искомой прямой. Мы можем сделать это, нарисовав линию, проходящую через точку Р и пересекающую кривую в расположенной рядом точке Q, а затем смещать эту точку все ближе и ближе к точке Р. Когда точка Q совпадет с точкой Р, полученная линия будет касательной к данной кривой в точке Р.
Аппроксимация касательной
Как мы уже знаем, градиент прямой линии — это отношение расстояния, покрытого прямой по вертикали, к расстоянию по горизонтали, а градиент кривой в определенной точке — это градиент касательной в этой точке. Касательные интересовали математиков только из-за градиентов. На представленном выше рисунке градиент линии, проходящей через точки P и Q, равен ∆y/∆x. (Греческая буква ∆ («дельта») — это математический символ, которым обозначаются малые приращения.) По мере приближения точки Q к точке Р значение ∆y/∆x приближается к градиенту касательной в точке Р. Но здесь возникает одна проблема. Если точка Q действительно совпадет с точкой Р, тогда ∆y = 0 и ∆x = 0, а это значит, что градиент кривой в точке Р равен 0/0. Но ведь это некорректная математическая операция! Арифметические правила запрещают деление на ноль! Проблему можно решить, удерживая точку Q на бесконечно малом расстоянии от точки Р. Сделав это, мы сможем сказать, что, когда точка Q приближается к точке Р на бесконечно малое расстояние, значение ∆y/∆x становится бесконечно близким к градиенту кривой в точке Р.
В 1665 году Исаак Ньютон, недавно окончивший Кембридж, вернулся в дом своей матери в Линкольншире [6]. «Черная смерть» уничтожала город за городом по всей Британии. Университет закрыли, чтобы защитить его персонал и студентов. В доме матери Ньютон устроил себе небольшой кабинет и начал записывать свои математические идеи в огромный дневник, который назвал «черновиком». На протяжении следующих двух лет Ньютон вел образ жизни отшельника и, ни на что не отвлекаясь, вывел новые теоремы, которые легли в основу Philosophiae Naturalis Principia Mathematica21 — опубликованного в 1687 году трактата, изменившего наше понимание физической Вселенной в большей степени, чем любая другая работа до или после этой книги. В ней Ньютон описал систему законов природы, объясняющую, почему различные объекты, от падающих с дерева яблок до планет, вращающихся вокруг Солнца, двигаются именно так, а не иначе. Однако открытия, сделанные Ньютоном в физике, требовали столь же фундаментального прорыва в математике. Он формализовал работу по бесконечно малым величинам, выполненную за предыдущие полстолетия, объединив ее результаты в общую систему с унифицированными обозначениями. Ньютон назвал ее методом флюксий, но она получила известность под названием «исчисление бесконечно малых величин», а сейчас ее часто называют просто исчислением.