MyBooks.club
Все категории

Алекс Беллос - Красота в квадрате

На сайте mybooks.club вы можете бесплатно читать книги онлайн без регистрации, включая Алекс Беллос - Красота в квадрате. Жанр: Прочее издательство -,. Доступна полная версия книги с кратким содержанием для предварительного ознакомления, аннотацией (предисловием), рецензиями от других читателей и их экспертным мнением.
Кроме того, на сайте mybooks.club вы найдете множество новинок, которые стоит прочитать.

Название:
Красота в квадрате
Издательство:
-
ISBN:
-
Год:
-
Дата добавления:
6 октябрь 2019
Количество просмотров:
277
Читать онлайн
Алекс Беллос - Красота в квадрате

Алекс Беллос - Красота в квадрате краткое содержание

Алекс Беллос - Красота в квадрате - описание и краткое содержание, автор Алекс Беллос, читайте бесплатно онлайн на сайте электронной библиотеки mybooks.club

Красота в квадрате читать онлайн бесплатно

Красота в квадрате - читать книгу онлайн бесплатно, автор Алекс Беллос

В 1665 году Исаак Ньютон, недавно окончивший Кембридж, вернулся в дом своей матери в Линкольншире [6]. «Черная смерть» уничтожала город за городом по всей Британии. Университет закрыли, чтобы защитить его персонал и студентов. В доме матери Ньютон устроил себе небольшой кабинет и начал записывать свои математические идеи в огромный дневник, который назвал «черновиком». На протяжении следующих двух лет Ньютон вел образ жизни отшельника и, ни на что не отвлекаясь, вывел новые теоремы, которые легли в основу Philosophiae Naturalis Principia Mathematica21 — опубликованного в 1687 году трактата, изменившего наше понимание физической Вселенной в большей степени, чем любая другая работа до или после этой книги. В ней Ньютон описал систему законов природы, объясняющую, почему различные объекты, от падающих с дерева яблок до планет, вращающихся вокруг Солнца, двигаются именно так, а не иначе. Однако открытия, сделанные Ньютоном в физике, требовали столь же фундаментального прорыва в математике. Он формализовал работу по бесконечно малым величинам, выполненную за предыдущие полстолетия, объединив ее результаты в общую систему с унифицированными обозначениями. Ньютон назвал ее методом флюксий, но она получила известность под названием «исчисление бесконечно малых величин», а сейчас ее часто называют просто исчислением.

Движущееся тело меняет свое положение в пространстве, а его скорость представляет собой изменение этого положения во времени [7]. Если тело перемещается с фиксированной скоростью, оно меняет свое положение на фиксированную величину за каждый промежуток времени. Движущийся с постоянной скоростью автомобиль, покрывающий 60 миль с 16 до 17 часов, движется со скоростью 60 миль в час. Ньютон хотел решить другую задачу: как вычислить скорость тела, перемещающегося не с постоянной скоростью? Предположим, тот же автомобиль движется не с постоянной скоростью 60 миль в час, а то ускоряет, то замедляет движение из-за транспортного потока. Один из методов расчета скорости этого автомобиля, например в 16:30, сводится к измерению отрезка пути, который он проедет с 16:30 до 16:31, что позволит определить расстояние, пройденное за минуту. (Для того чтобы получить скорость в милях в час, нам останется просто умножить это расстояние на 60.) Однако это значение представляет собой среднюю скорость за эту минуту, а не мгновенное значение скорости в 16:30. Мы можем взять еще более короткий промежуток, скажем путь, который проедет автомобиль с 16:30 до 16:30 и одна секунда, что даст нам расстояние за секунду. (Для того чтобы получить скорость в милях в час, необходимо умножить это расстояние на 3600.) Но это тоже всего лишь средняя скорость в данную секунду. Мы можем и дальше сокращать промежутки, но так и не получим мгновенное значение скорости до тех пор, пока этот промежуток не окажется меньше любого другого — другими словами, пока он не станем равным нулю. Но если промежуток равен нулю, автомобиль не движется!

Эта цепочка рассуждений должна показаться вам знакомой, поскольку я уже использовал ее выше, когда объяснял, как вычислить градиент точки на кривой. Для того чтобы определить градиент, мы делим бесконечно малую величину (длину) на другую бесконечно малую величину (еще одну длину). Для того чтобы вычислить мгновенное значение скорости, мы также должны разделить бесконечно малую величину (расстояние) на другую бесконечно малую величину (время). С математической точки зрения эти две задачи идентичны. Метод флюксий Ньютона был методом вычисления градиентов, который позволил рассчитывать мгновенное значение скорости движущихся объектов.

Посмотрим, как Ньютон применил этот метод для вычисления градиента кривой y = x2 — давно знакомой нам параболы. Изложенные ниже объяснения носят специальный характер, но, если вы будете читать медленно, вам не трудно будет их понять. К концу вы увидите, как Ньютон использовал бесконечно малые величины для выведения формулы градиента каждой точки на этой прямой.

Вычисление градиента кривой y = x2

Для начала выполним те же действия, что и немного выше, в процессе построения касательной: возьмем произвольную точку Р, построим в ней приближенную касательную, которая проходит через другую точку Q, расположенную недалеко от Р вдоль кривой. Затем приблизим точку Q на бесконечно малое расстояние от Р. Градиент касательной в точке Р — и есть градиент кривой в этой точке. Давайте введем новый символ о и обозначим им расстояние по горизонтали между точками Р и Q, как показано на рисунке выше. Если координаты точки Р — (x, x2), то координаты точки Q — (x + o, (x + o)2). Следовательно, вертикальное расстояние между точками P и Q составляет (x + o)2 − x2, стало быть, градиент прямой равен отношению расстояния по вертикали к расстоянию, покрытому по горизонтали:

В этом выражении можно раскрыть скобки:

И свести к такому уравнению:

Что равно:

2x + o

Когда точка Q приближается к точке Р на бесконечно малое расстояние, значение о становится бесконечно малым, а значит, градиент — бесконечно близким к 2x. Ньютон утверждал, что мы можем позволить точке Q совпасть с точкой Р и что, когда это действительно произойдет, мы можем отбросить бесконечно малое значение о и с уверенностью заявить, что градиент в точке Р равен 2x. Как только бесконечно малая величина выполнит свою работу, она может уйти со сцены.

Другими словами, градиент кривой y = x2 в точке с координатой х на горизонтали равен 2x.

Если вся эта алгебра показалась вам слишком сложной, вы все равно можете оценить значимость достижений Ньютона. Он выделил самое важное свойство кривой (ее градиент) и вывел формулу 2x, позволяющую вычислять градиент в любой точке кривой. Обозначив градиент символом y´, мы можем записать новое уравнение: y´ = 2x, которое еще известно как производная исходной кривой.

Верхний левый график на представленном ниже рисунке — это кривая y = x2, а непосредственно под ним — ее градиент, y´ = 2x, являющийся прямой линией. Когда x равен 1, кривая имеет значение 1, а градиент равен 2. Когда x равен 2, кривая имеет значение 4 и градиент равен 4. Эта кривая повышается в форме параболы, а градиент — в форме прямой линии. А теперь забудьте о геометрии и подумайте о математике. Оба графика описывают поведение движущегося объекта. Если исходная кривая отображает положение объекта во времени, то производная — мгновенное значение скорости. Эти графики показывают, что за 1 единицу времени объект проходит 1 единицу расстояния, а его скорость — 2. За 2 единицы времени объект проходит 4 единицы расстояния, а его скорость равна 4 и т. д. По сути, верхняя кривая моделирует позицию объекта в момент его падения под воздействием силы тяжести: пройденное расстояние пропорционально квадрату истекшего времени. Воспользовавшись методом исчисления, Ньютон показал, что мгновенное значение скорости падающего объекта увеличивается по линейному закону.

Градиент параболы, изображенной на верхнем левом рисунке, — прямая линия, а градиент кривой А — кривая В

Я выбрал кривую y = x2, потому что ее производная вычисляется достаточно просто, но метод Ньютона применим ко всем гладким кривым при условии наличия уравнения, описывающего соответствующую кривую. На верхнем рисунке справа показана еще одна кривая, а ниже — кривая ее градиента, или производной. Но здесь я опустил уравнения этих кривых и просто назвал их А и В — мне хотелось бы, чтобы вы прочувствовали всю красоту данной трансформации. Градиент кривой А в каждой ее точке изображен на нижнем графике в виде кривой В. Давайте совершим путешествие по кривой А слева направо. Эта кривая повышается, достигает вершины, опускается, доходит до нижней точки, а затем снова поднимается. Другими словами, градиент имеет положительное значение, достигает нуля в тот момент, когда кривая на мгновение становится горизонтальной, затем принимает отрицательное значение, повышается до нуля и снова становится положительным. Но ведь именно это и происходит с кривой В! Сначала она проходит в области положительных значений, затем пересекает горизонтальную ось, переходит в область отрицательных значений, а потом снова врывается в положительную плоскость. (Пунктирные вертикальные линии показывают соответствие между важными точками верхней кривой и нулевыми значениями градиента.) Когда я впервые увидел такую кривую вместе с кривой градиента, я был поражен. Мне казалось настоящим волшебством то, что изменение величины, заданное одной кривой, идеально отображается другой кривой.


Алекс Беллос читать все книги автора по порядку

Алекс Беллос - все книги автора в одном месте читать по порядку полные версии на сайте онлайн библиотеки mybooks.club.


Красота в квадрате отзывы

Отзывы читателей о книге Красота в квадрате, автор: Алекс Беллос. Читайте комментарии и мнения людей о произведении.

Прокомментировать
Подтвердите что вы не робот:*
Подтвердите что вы не робот:*
Все материалы на сайте размещаются его пользователями.
Администратор сайта не несёт ответственности за действия пользователей сайта..
Вы можете направить вашу жалобу на почту librarybook.ru@gmail.com или заполнить форму обратной связи.