Физические и химические свойства. Т. имеет кубическую объёмно-центрированную решётку (а = 3,296 ); атомный радиус 1,46 , ионные радиусы Та2+ 0,88 А, Та5+ 0,66 А; плотность 16,6 г/см 3 при 20 °С; t пл 2996 °С; t кип 5300 °С; удельная теплоёмкость при 0—100 °С 0,142 кдж/ (кг× К) [0,034 кал/ (г × °С)]; теплопроводность при 20—100 °С 54,47 вт/ (м×К ) [0,13 кал/ (см ×сек ×°С)]. Температурный коэффициент линейного расширения 8,0×10-6 (20—1500 °С); удельное электросопротивление при 0°С 13,2×10-8 ом×м, при 2000 °С 87×10-8 ом×м. При 4,38 К становится сверхпроводником. Т. парамагнитен, удельная магнитная восприимчивость 0,849×10-6 (18 °С). Чистый Т. — пластичный металл, обрабатывается давлением на холоду без значительного наклёпа. Его можно деформировать со степенью обжатия 99% без промежуточного отжига. Переход Т. из пластичного в хрупкое состояние при охлаждении до -196 °С не обнаружен. Модуль упругости Т. 190 Гн/м 2 (190×102 кгс/мм 2 ) при 25 °С. Предел прочности при растяжении отожжённого Т. высокой чистоты 206 Мн/м 2 (20,6 кгс/мм 2 ) при 27 °С и 190 Мн/м 2 (19 кгс/мм 2 ) при 490 °С; относительное удлинение 36% (27 °С) и 20% (490 °С). Твёрдость по Бринеллю чистого рекристаллизованного Т. 500 Мн/м 2 (50 кгс/мм 2 ). Свойства Т. в большой степени зависят от его чистоты; примеси водорода, азота, кислорода и углерода делают металл хрупким.
Конфигурация внешних электронов атома Та 5d 3 6s 2 . Наиболее характерная степень окисления Т. + 5; известны соединения с низшей степенью окисления (например, TaCl4 , ТaClз , TaCl2 ), однако их образование для Т. менее характерно, чем для ниобия.
В химическом отношении Т. при обычных условиях малоактивен (сходен с ниобием). На воздухе чистый компактный Т. устойчив; окисляться начинает при 280 °С. Имеет лишь один стабильный окисел — пятиокись Ta2 O5 , которая существует в двух модификациях: a-форме белого цвета ниже 1320 °С и b-форме серого цвета выше 1320 °С; имеет кислотный характер. С водородом при температуре около 250 °С Т. образует твёрдый раствор, содержащий до 20 атомных % водорода при 20 °С; при этом Т. становится хрупким; при 800—1200 °С в высоком вакууме водород выделяется из металла и его пластичность восстанавливается. С азотом при температуре около 300 °С образует твёрдый раствор и нитриды Ta2 N и TaN; в глубоком вакууме выше 2200 °С поглощённый азот вновь выделяется из металла. В системе Та — С при температуре до 2800 °С установлено существование трёх фаз: твёрдого раствора углерода в Т., низшего карбида Т2 С и высшего карбида TaC. Т. реагирует с галогенами при температуре выше 250 °С (с фтором при комнатной температуре), образуя галогениды преимущественно типа TaX5 (где Х = F, Cl, Вг, I), При нагревании Та взаимодействует с С, В, Si, Р, Se, Те, водой, CO, CO2 , NO, HCI, H2 S.
Чистый Т. исключительно устойчив к действию многих жидких металлов: Na, К и их сплавов, Li, Pb и др., а также сплавов U — Mg и Pu — Mg. Т. характеризуется чрезвычайно высокой коррозионной устойчивостью к действию большинства неорганических и органических кислот: азотной, соляной, серной, хлорной и др., царской водки, а также многих др. агрессивных сред. Действуют на Т. фтор, фтористый водород, плавиковая кислота и её смесь с азотной кислотой, растворы и расплавы щелочей. Известны соли танталовых кислот — танталаты общей формулы x Me2 O×у Та2 О5 ×Н2 О: метатанталаты MeTaO3 , ортотанталаты Me3 TaO4 , соли типа Me5 TaO5 , где Me — щелочной металл; в присутствии перекиси водорода образуются также пертанталаты. Наиболее важны танталаты щелочных металлов — KTaO3 и NaTaO3 ; эти соли — сегнетоэлектрики.
Получение. Руды, содержащие Т., редки, комплексны, бедны Т.; перерабатывают руды, содержащие до сотых долей процента (Та, Nb)2 O5 , и шлаки восстановительной плавки оловянных концентратов. Основным сырьём для производства Т., его сплавов и соединений служат танталитовые и лопаритовые концентраты, содержащие соответственно около 8% Ta2 O5 и 60% и более Nb2 O5 . Концентраты перерабатывают обычно в три стадии: 1) вскрытие, 2) разделение Та и Nb и получение их чистых соединений, 3) восстановление и рафинирование Та. Танталитовые концентраты разлагают кислотами или щелочами, лопаритовые — хлорируют. Разделяют Та и Nb с получением чистых соединений экстракцией, например трибутилфосфатом из плавиково-кислых растворов, или ректификацией хлоридов.
Для производства металлического Т. применяют восстановление его из Ta2 O5 сажей в одну или в две стадии (с предварительным получением TaC из смеси Ta2 O5 с сажей в атмосфере CO или H2 при 1800—2000 °С); электрохимическое восстановление из расплавов, содержащих K2 TaF7 и Ta2 O3 , и восстановление натрием K2 TaF7 при нагревании. Возможны также процессы термической диссоциации хлорида или восстановление из него Т. водородом. Компактный металл производят либо вакуумной дуговой, электроннолучевой или плазменной плавкой, либо методами порошковой металлургии. Слитки или спечённые из порошков штабики обрабатывают давлением; монокристаллы особо чистого Т. получают бестигельной электроннолучевой зонной плавкой.
Применение. Т. обладает комплексом ценных свойств — хорошей пластичностью, прочностью, свариваемостью, коррозионной устойчивостью при умеренных температурах, тугоплавкостью, низким давлением пара, высоким коэффициентом теплопередачи, небольшой работой выхода электронов, способностью образовывать анодную плёнку (Ta2 O3 ) с особыми диэлектрическими характеристиками и «уживаться» с живой тканью организма. Благодаря этим свойствам Т. находит применение в электронике, химическом машиностроении, ядерной энергетике, в металлургии (производство жаропрочных сплавов, нержавеющих сталей), в медицине; в виде TaC его применяют в производстве твёрдых сплавов. Из чистого Т. изготовляют электрические конденсаторы для полупроводниковых приборов, детали электронных ламп, коррозионноустойчивую аппаратуру для химической промышленности, фильеры в производстве искусственного волокна, лабораторную посуду, тигли для плавки металлов (например, редкоземельных) и сплавов, нагреватели высокотемпературных печей; теплообменники для ядерно-энергетических систем. В хирургии листы, фольгу, проволоку из Т. применяют для скрепления костей, нервов, наложения швов и др. Применение находят танталовые сплавы и соединения.
Лит.: Зеликман А. Н., Меерсон Г. А., Металлургия редких металлов, М., 1973.,
О. П. Колчин.
Тантали'т, минерал из группы сложных окислов: крайний член изоморфного ряда колумбит — танталит (см. Колумбит ). Химический состав (Fe, Mn)(Ta, Nb)2 O6 . В Т. тантал (в массовых %) преобладает над Nb. Разновидности Т. — ферротанталит (FeO: MnO>3: 1, содержание FeO достигает 14%), манганотанталит (MnO: FeO>3: 1, содержание MnO достигает 14%); в качестве примесей присутствуют Ca, Mg, Sn, Ti, W, U, Th и др. Кристаллизуется в ромбической системе; структурный тип колумбита. Кристаллы таблитчатые, игольчатые. Цвет чёрный, сероватый, бурый, красно-коричневый. В ряду колумбит — танталит с ростом содержания Ta2 O5 закономерно изменяются физические свойства: Т. характеризуется большей твёрдостью (до 6,5 по минералогической шкале) и плотностью (7000—8200 кг/м3 ). От колумбита Т. отличается оптическими константами в инфракрасной области спектра. Генетически связан с гранитами, пегматитами (редко-метальными, мусковитовыми, кварц-полевошпатовыми и др.), карбонатитами и щелочными породами; в пегматитах Т. кристаллизуется в более поздней стадии, чем колумбит, ассоциируя с альбитом, лепидолитом, бериллом и др. Т. устойчив к выветриванию и концентрируется в россыпях , откуда он в основном и добывается. Используется как сырьё для извлечения тантала.
Танта'лова пеще'ра (Tantalhöhle), карстовая пещера в Зальцбургских Альпах (горы Хаген), в Австрии. Длина 16 км. Выработана в известняках триаса. Полости пещеры уходят вглубь от поверхности на 440 м. Туризм.
Танта'ловые ру'ды, природные минеральные образования, содержащие Та в таких соединениях и количествах, при которых промышленное извлечение его технически возможно и экономически целесообразно. Различают собственно Т. р., в которых Ta2 O5 : Nb2 O5 ³ 1, и комплексные тантало-ниобиевые руды (см. Ниобиевые руды ). Главные минералы Т. р.: колумбит-танталит (30—45% Ta2 O5 ), танталит и манганотанталит (45—80% Ta2 O5 ), воджинит (Та, Sn, Mn)3 O6 (60—85% Ta2 O5 ), микролит Ca2 (Ta, Nb)2 O6 (F, OH) (50— 80% Ta2 O5 ) и др. Главные минералы тантало-ниобиевых руд, из которых наряду с Nb извлекают значительно более дорогой Та, — колумбит (5—30% Ta2 O5 ), гатчеттолит (Ca, TR, U)2 (Nb, Та)2 O6 (F, OH)×n H2 O (8—28% Ta2 O5 ), тантал-содержащий пирохлор (1—4% Ta2 O5 ), лопарит (0,4—0,8% Ta2 O5 ), и ксиолит (Nb, Та, Sn, W, Sc)3 O6 . Среднее содержание Ta2 O5 в Т. р. 0,012—0,03%, редко 0,24% (Берник-Лейк, Канада); тантало-ниобиевые руды содержат 0,02—0,05% Ta2 O5 .